
Spring 2012 LTI Colloquium Report 

Programming by  
Demonstrations and Verbal Commands   

Ni Lao 

 

1.  Introduction  

This is a response to Pedro Moreno's talk "Google's Speech Internationalization Project: From 
1 to 300 Languages and Beyond". In this talk, Pedro described how speech recognition is made 
possible for hundreds of languages on mobile devices. This technology reminds me the great 
potential of enabling end users to do programming. In this report I will first briefly survey the 
current state of programming by demonstration (PbD) research, and then I will describe a PbD 
framework called Verbal Programming Architecture (VPA), which allows end users to do 
programming through verbal commands. An important feature of VPA is to use Path Ranking 
Algorithm as (PRA) as the engine to generalize users' action sequences. 

 

2.  Programming by Demonstration  

Long before the existence of personal computers, people (Teitelman, 1966) have got the idea of 
users constantly coaching computers in order to achieve functions so complex that are hard to 
express by programming. However, it was until the advent of personal computers that many 
such attempts have been made (Lieberman, 2001; Cypher, 1993). Naturally many of these 
attempts reflect the diverse need of different users---i.e. personalization of computer programs.  
Generally, Programming by Demonstration (PbD) is an end-user development technique for 
teaching a computer or a robot new behaviors by demonstrating the task to transfer directly 
instead of programming it through machine commands. 

The tasks people try to personalize have a wide range including 

 controlling software (e.g. CAD, GIS, games, word processing, graphical editing etc.) 

 information extraction (e.g. from emails) 

 information gathering (e.g. from web browsers)  

 creation of simple applications 

 robotic control 

Although none of these systems is popular or commercially successful  today, I will assume in 
this report that some form of highly personalized application (e.g. information gathering) will 
be significant enough in the future, and this report will focus on solving an abstract PbD 
problem.  

The motivations behind these PbD systems can be any one of the following 

 personalization 

 repeated tasks 
o e.g. "send invoices to all California customers on the 1st of each month, and 

to all other customers on the 15th" 

 tasks which need fast than human response 

 tasks which need automatic response 
o e.g. automatically invoke a macro whenever a particular dialog box appears. 

 the programming bottleneck 
o most users are unable to take advantage of the computers' capabilities 

because they do not know how to program.  



From a technical perspective there are several challenges for PbD 

 Determine when to record an action 
o For most existing systems, users can explicitly invoke the recording of 

actions. Some systems detect repeated actions sequences by the users  (e.g. 
the Eager system). 

 Determine when to invoke an action 
o For most existing systems, programs are invoked by user actions--e.g. voice 

command, or system events--e.g. time of day, keystrokes, etc. Some systems 
learn signals which trigger the actions. 

 Generalize users' action sequences into program. 
o Many approaches have been proposed, which I will discuss in detail later.  

 Specify the flow of control 
o There may be conditions in the control flow--e.g. to handle failures, or loops. 

Most systems automatically detect such constructs, and ask the user to verify.  

 Access internal data of existing applications 
o To avoid this problem, most systems are built from scratch. Several 

exceptions are systems which provide APIs --e.g. Windows, FireFox. 

 Make sure the user is in control 
o Some systems allow the user to execute the program one step at a time. Some 

systems allow the user to rollback a stack of actions taken by the program.  

A central problem of PbD is to generalize users ' action sequences into programs which are 
applicable to new contexts. Whenever the user selects an object in a demonstration, the PBD 
system must determine why that particular object was selected, so that when the program is 
invoked in the future -- in a different context -- the appropriate object will be selected. A data 
description specifies how to select the appropriate object. The description might be "the 
rectangle created in the previous step", "the first word in the current document", or "a button 
named SEND". Generally, most systems use search or pattern matching techniques to come up 
with several hypothesis, visualize then to the user, and let him/her choice the most appropriate 
one. In some cases, the hypothesis is showing as a high level script, and the user is allowed to 
directly edit it. Some patterns that have been inferred by different systems are 

 Condition-action rules: Some systems (e.g. Peridot, Metamouse) predefine a set of 
condition-action rules, if the condition applies to the current context, then the user is 
asked if the rule should be applied.  

 Repeated sequences: Some systems (e.g. Predictive Calculator, Eager) keep a history 
of all k actions taken by the user, and whenever the user does k-1 actions that match a 
previously recorded sequence, then the k-th action is predicted.  

 Conjunctions of features: Sometimes the PbD need the ability to infer conjuncts of 
features, e.g. select "all New England customers with small orders".  

 Iteration: which can be classified as set iteration, iteration with a counter, and 
iteration until a condition is satisfied 

 Conditional branches: allow a program to execute different code in different 
situations. They have traditionally been difficult to specify by demonstration, since it 
can be laborious to demonstrate each complete path through a program. Pygmalion, 
Tinker and Metamouse address this issue by allowing the user to postpone recording 
the "else" part of a conditional until that situation arises during the use of the program.  

 Arguments binding: When a recorded procedure is invoked in a new context, it must 
establish bindings for the various objects in the program. Most systems let the users 
explicitly specified the arguments in a new context.  

This report mainly considers the argument binding problem, which is very close to the 
relational learning problem that PRA is trying to solve.  

  



3.  Verbal  Programming Architecture  

This section describes a PbD framework called Verbal Programming Architecture (VPA), 
which allows end users to do programming through verbal commands. The key characteristics 
of VPA are 

 Graph representation: the environment of a problem is represented as edge-typed 
graphs, which may include information such as attributes of objects and users, global 
state variables, adjacency of lines or word tokens in a text, or general world 
knowledge. This representation allows us to develop a general purpose PbB 
algorithm. 

 PRA as inference engine: PRA is a relational learning algorithm which is efficient for 
large scale application, and expressive enough to capture complex patterns. 

 Recursive definition of functions: one limitation of existing PbD systems is the lack 
of ability to combine lower level commands to form higher level commands. For 
example solving a linear equation consists of several steps, but itself can be a 
sub-routine of a higher level command. 

 

3 .1 .  Pro ble m Def in i t io n  

Formally, we define the problem of verbal programming as the following. 

 The environment E={O, T, R} consists of a set of objects O={oi}, a set of object 
types T={tj} and a set of relations R={rk}. The nodes are typed, for example a node 
can be an UI object in an operating system, a file in storage system, or a text span. A 

relation rj:O→2
O
 maps each object in its range to a set of objects  (pointers). For 

example a file in windows is a node in the environment, and a size_of relation maps 
this node to a node of double value.  

 There is an agent which can execute actions to this environment, and also interact 
with a user in order to figure out what the user want. Each agent action has the form 
of a(t1,…,tn), where ti is the type of the i-th argument. For example a delete_file 
command has one argument of type file.  

 There is a set of commands C={ci} that can be invoked by the user. By default, each 
action a(t1,…,tn) correspond to an atomic command c(t1,…,tn), but the agent can also 
learn compositional commands which invoke two or more commands.  

There is a single user interacting with the agent. The user can speak three types of sentences.  

 A commanding sentence invokes a predefined or learned command of the agent--e.g. 
"delete this file". Since the meaning of vocabularies can be learned through HCI, we 
assume an unbounded vocabulary size and also pronouns are acceptable.  

 A programming sentence is supposed to define/redefine a command--e.g.  "the open 
control panel command has two steps--left click the start bottom, and left lick the 
control panel link".  

 A feedback sentence is supposed to give feedback to the current behavior of the 
agent--e.g. "stop", "correct", "wrong". 

  



3 .2 .  Archi t ec ture  

Here we assume that the agent can already differentiate commanding, programming, and 
feedback sentences through some sort of speech recognition and template matching techniques.  
The figure below demonstrates how a commanding sentence s (e.g. "Move file 001 to folder 
001") is processed.   

 s is first parsed by a ccg parser into verbal patterns-- "Move<x> to <y>", and NP 
arguments --"this file" and "my backup folder".   

 The verbal pattern is matched to an existing command c. Note that different patterns 
might map to the same command. 

 The NP arguments of c are translated into objects in the environment by PRA models.  
o Each argument of a command comes with a set of weighted relation paths 

which can retrieve objects in the environment to be used as arguments. These 
paths can be learned from demonstrations by the user in the past.  

 Pushed the fully translated command and arguments to the top of a command stack  

 If the top of the stack is a composite command, then it is replaced by a sequence of 
lower level command, otherwise it is executed. 
 

 

 

References  

[1] Cypher, Allen (1993), Watch What I Do: Programming by Demonstration, Daniel C. Halbert, MIT 
Press, ISBN 0-262-03213-9 

[2] Lieberman, Henry (2001), Your Wish is My Command: Programming By Example, Ben 
Shneiderman, Morgan Kaufmann, ISBN 1-55860-688-2  

[3] Warren Teitelman (1966), PILOT: A Step Toward Man-Computer Symbiosis, September, PhD 
Thesis, MIT 

c

c

a

c

a

a

a

c

c

c

V

Move <x> to <y>

“Move this file to my backup folder”

ccg 

parser

Verbal patterns

commanding 

sentence

Command 

hierarchy

x=this file

y=my backup folderLogical form

c,o,o
c

c,o
c,o

Command

stack

o

Pointer to 

objects created 

by the last action

Push 

matched 

command 

to stack

Context 

visible to 

PRA
PRA 

models

o a file in the system
o a folder in the system


