
Split-Emit Process for Natural Language Generation

Ni Lao, 2009-5-7

1 Introduction

There have been plenty of non-statistical Natural
Language Generation (NLG) methods in both
top-down manner (Dymetman& Isabelle, 1988;
Wedekind, 1988) and bottom-up manner (Shie-
ber et al., 1990). As Van Noord (1994) summa-
rized, the main problem of top-down approaches
is the possibility of infinite recursion during gen-
eration, and the main problems of bottom-up ap-
proaches is the severe restriction on possible
grammars and rather inefficient processing.

Unlike parsing, for which word order is given,
NLG may encounter factorial number of possible
word orders (Carroll et al., 1999). This leads to
potentially exponential time complexity even
with carefully designed algorithm on packed
chart. The fact that many arcs generated are
never used in a full derivation tree has a signifi-
cant effect on scalability.

Recent statistical NLG works (Langkilde,
2000; White & Baldridge, 2003; Nakanishi et al.,
2005; White et al., 2007) use packed charts to
sum out all possible parse trees during training,
and to find best parse tree during generation. Mi-
yao & Tsujii (2005) report only 418 out of 500
randomly sampled sentences were successfully
generated with a HPSG grammar trained on Penn
TreeBank, and some of them take extremely long
time to generate. White et al. (2007) report that
only 22% of test sentences are successfully gen-
erated with a CCG grammar trained from Penn
TreeBank, and the search exceeds time limit for
68% of the sentences. Therefore, for most of the
sentences, they need to apply post processing to
concatenate text fragments into a sentence. These
results expose a dilemma of the need of a less
permissive grammar to restrict search space to be
affordable, and the need of a more permissive
grammar to accept more unseen sentences.

In this proposal, we present a fast top-down
statistical generation algorithm with permissive
CFG grammar. The algorithm, called Split-Emit,
can be considered as a reversed shift-reduce al-
gorithm—with two operations split and emit as
opposed to reduce and shift. It starts with the
whole semantics and split it recursively, and has
O(n) generation complexity with respect to size
of the input semantics. In order to avoid the pos-
sible infinite recursion we add constraint to the

split process which forbids the generation of
node that already exists. To our knowledge, this
is the first statistical top-down generator.

2 The Semantic DAG

Let’s first introduce how the semantics of a natu-
ral language sentence can be represented as a
Directed Acyclic Graph (DAG). Following Na-
kanishi et al.’s (2005) work, we use Predicate-
Argument Structure (PAS) as the semantic repre-
sentation. For example, the sentence “He bought
the book.” has the following four PASs:

buy(e)∧ past(e)∧ARG1(e,x)∧ARG2(e,y)
the(z) ∧ARG1(y)
he(x)
book(y)

Each lowercase letter represents an entity, and
the semantics of a sentence can be interpreted as
a graph with entities as nodes (decorated with
labels, e.g. “past tense”) and argument relations
as edges.

Figure 1 : Graph representation of semantics

For the purpose of text generation, a semantic
meaning M in PASs representation can be aug-
mented with a CFG tag L, and a head pointer p
pointing to the entity in M that is going to be the
head of the generated text. For example, if M is
the same as Figure 1, different text may be gen-
erated from different heads or syntactic labels:

<M, S, e>: he bought the book
<M, NP, x>: he who bought the book
<M, NP, y>: the book that he bought

In this way, we maximally separate the semantic
aspect of a piece of text (M) from its syntactic
aspects (L and p).

This representation is different from the origi-
nal PASs definition of Nakanishi et al.’s (2005)
where each word corresponds to exactly one
PAS. In this study, functional words like to, is,

that are considered syntactic and have no seman-
tic representation.

This representation is also different from
HLDS (Hybrid Logic Dependency Semantics)
employed by White and Baldridge (2003). In
order to generate “the book that he bought” from
HLDS, y:book needs to have an argument Gen-
Rel pointing back to e:buy, where GenRel is a
general relation as in relative clause modification.
In this study, this kind of information is consider
syntactic and represented by head pointer p.

For HPSG (Sag et al., 2003) information re-
lated to voice, tense etc are specified in syntactic
structure. In our representation, this information
is specified in semantic graph as labels to the
nodes (e.g. passive(x), past(x)).

In the rest of this proposal we assume that se-
mantic structures are representable as DAG. This
is ensured by most of the current semantic theo-
ries, like Montague Semantics (MS), Discourse
Representation Theory (DRT) and Situation Se-
mantics (SS) (Reyle 1988; Halvorsen 1987). As a
future work we can also develop heuristic rules
to break circles by duplicating some of the nodes.

3 The Split-Emit Generation Process

Here we describe a generative process that trans-
forms a semantic DAG to text. We assume that
M is either atomic that can be directly trans-
formed into surface text (a word or phrase) or
composite that can be split into two meanings M0,
M1, so that M0 is to be generated before M1.

Start with the tuple <M, L, p>. It is recursively
splited until the semantics is atomic, and emits
surface words as shown in Figure 1. After M is
fully splited we get both a binary syntactic tree,
and a piece of text (a sentence, if L=S, the "start"
non-terminal of sentence).

NP, y

buy(e)∧ past(e)∧ARG1(e,x)∧ARG2(e,y)
the(z) ∧ARG1(y); book(y); he(x)

SBAR, e
buy(e)∧ past(e)
∧ARG1(e,x); he(x)

NP, y
the(z) ∧ARG1(y)
book(y)

S, e
buy(e)∧ past(e)
∧ARG1(e,x); he(x)

DT, z
the(z)

NN, y
book (y)

NP, x
he (x)

VV, e
buy(e)∧ past(e)

the book that he bought
Figure 2 Text generated by split and emit

This semantic splitting process concord with
the Semantics Composition Principle: the seman-
tics of a constituent is the sum of semantics of its
daughters (Sag et al., 2003).

Note that sometimes M is splited to an empty
semantic and a semantic equal to itself. These
kinds of null splits permit the generation of func-
tional words not represented in the semantics
such as the word “that” in Figure 2.

With the assumption that semantic graph is a
DAG, the task of graph splitting is reduced to
decide which edge should be broken, the order
and syntactic category for each side of the edge.
However, with a permissive grammar like CFG
(trained from TreeBank), it is very important to
choose from possibly huge number of derivation
trees for the same tuple <M, L, p>. We achieve
this goal from two aspects.

First, we reduce number of possible trees gen-
erated by exploring several regularities. From the
Semantic Inheritance Principle (Sag et al., 2003)
we assume that a mother node in derivation tree
share the semantic head with one of its daughter.
We also assume that at each split step, it is al-
ways one of the links around head node that gets
broken, and the node on the other side of the
broken link becomes head of the other half of
semantics. As we know, in HPSG, syntactic head
and semantic head are the same except for some
head adjunct-daughters (Wilcock & Matsumoto,
1998). This helps justify that when two constitu-
ents combined into a new constituent, it is al-
ways their heads that are interacting with each
other, both syntactically and semantically
(Probably need more justification here). This
assumption greatly reduces the search scope of
links to be broken, and continently help specify
the semantic heads.

Second, we can define features and scoring
functions to rank the generated sentences. White
& Baldridge (2003) and White et al. (2007) score
legitimate (HPSG) derivation trees with a variety
of factored trigram models over words, POS tags
and supertags. Nakanishi et al. (2005) score le-
gitimate (CCG) derivation trees with a log-linear
model based on lexicalization, bigram and syntax
features. In this work, instead of find the best
tree in bottom-up dynamic programming style,
we use efficient method in top-down greedy style.

4 Dealing with Infinite Recursion

To propose a top-down approach, we need to
deal with the problem of possible infinite recur-
sion during generation (Van Noord, 1994). We

find this problem roots in the inadequacy of CFG
labels. For example the sentence “the book was
bought by him”. Both the constituent spanning
“was bought by him” and “bought by him” have
the same CFG label VP. This causes a generator
to produce potentially infinite number of “was”.

We think the best solution is to augment the
CFG tag to distinguish such syntactic differences.
Probably with tag splitting method of Petrov et al.
(2006). In this study, however, we take a simpler
solution, by disallowing any split action which
generates node that has already been generated
(with same semantics and syntactic category).

5 The Split-Emit Algorithm

The Split-Emit Algorithm generally has a sym-
metric structure to the well known shift-reduce
parsing algorithm as the following. It assumes
function split() that decide which part of the se-
mantics should be realized first and decide new
syntactic category for both parts. It also assumes
a function lexicalize() that translates atomic se-
mantics into surface form, and decideAction() to
decide which action to take. Same as shift-reduce
parsing, it can run in best-first (greedy) mode, or
beam search mode. In beam search mode, top K
sentences are generated and ranked based on
multiplication of probability of all actions (de-
fined in 5.1) taken in the derivative of a sentence.
We also compare to a more sophisticated ap-
proach, in which ranking is based on log linear
models similar to White et al. (2007) and Naka-
nishi et al. (2005).

function splitEmit(<M,L>)
Input: <semantics M, syntax label L, head p>
Output: sentence w
 S=empty stack []
 while(M!=null or L!=[])
 if M=null
 <M, L, p>=S.pop()
 action=decideAction(<M, L ,p>)
 if action=EMIT
 w+=lexicalize(<M,L ,p >)
 M=null
 else if action=SPLIT
 (<M0,L0,p0>, <M1,L1,p1>)= split(<M,L,p>)
 S.push(<M1,L1,p1>)
 <M,L>=<M0,L0,p0>
return w

Here we give an implementation with PASs

semantic representation, and split function based
on stacked learning.

5.1 Splitting the Semantics

From assumption in section 3, the edges in con-
sideration are the ones around the head semantic
node. For an edge e, we denote the head node v0
and the node on other side of e v1. We extract for
each edge the following set of features:

 syntax label of the head L,
 labels in v0, labels in v1,
 argument type (and direction (v0 v1 v.s.

v1 v0) of e,
 and possibly other global and local features.

Then train a maximum entropy classifier to pre-
dict this edge into the following classes:

 Any combination of D*L0*L1,
 NoSplit.

D={forward, backward} decides which side
should be realized first. L0, L1, are the syntactic
categories assigned to each side. NoSplit means
this edge should not be broken. During genera-
tion, the edge with the highest probability of any
D*L0*L1 category becomes the split point, and
this probability is assigned to this action, which
will be used to rank sentences, and restrict the
beam width (top k actions sorted by their prob-
abilities go into the beam).

However, this design has the apparent draw-
back that decisions of edges are made independ-
ently. Therefore, we apply stacked learning
(Wolpert, 1992; Kou & Cohen, 2007) which per-
mits the use of efficient classifier in place of
more computationally-intensive joint inference
models. Feature vector of each edge are aug-
mented by the following template (Kou &
Cohen, 2007):

 For each category c, sum of the expectation
given by classifier of previous level for all the
edges in consideration.

Number of stacking can be determined in ex-
periment.

Since the algorithm break one link from the
DAG each time (except for the null-splits), about
n-1 splits are needed to break a semantic M of
size n, and time complexity is about O(n).

5.2 Lexicalization and Decision of Actions

In this proposal, the lexicalization and decision
functions are very simple. If the semantic graph
contains only one node, then the action is EMIT.
Otherwise, the action is SPLIT.

Lexicalization is done using a look up table
generated from a training corpus with items like

buy(e)∧ past(e)→bought
On the left-hand-side is a node observed in the
corpus, on the right-hand-side the most probable

word associated with this node in the corpus. If
the whole LHS cannot be found in the look up
table, then the lexical label (“buy” in the above
case) is emitted as a back-off.

6 Evaluation

Training, developing, and testing data are seman-
tic representations derived from Penn TreeBank
section 2-21, 22, and 23. There are two possible
ways to derive semantic representations (features
and predicate-argument relations) and derivation
trees for each sentence. First is HPSG derivation
trees of Penn TreeBank. Miyao et al. (2004) cre-
ated more than 250 heuristic rules to transform
Penn CFG trees to HPSG trees. Second is CCG

derivation trees of Penn TreeBank. White et al.
(2007) use about two dozen rules to augment
CCG trees with logical forms. Third is LFG
derivation trees of Penn TreeBank. Cahill et al.
(2004) developed automatic system to annotate f-
structure to CFG trees. Since all above tree se-
mantic representations contains predicate-
argument structure, it is strait forward to extract
semantic DAG from them.

Same as previous works (Table 1), generation
accuracy can be measured by BLEU score (Pap-
ineni et al., 2001) and exact matches. Since the
proposed system does not handle semantic graph
that are not DAG, we ignore those during evalua-
tion.

Table 1 Previous works

Work Semantics
Format

Train Tune Test Cvg BLUE Exact

White et al. 07 HLDS (CCG) Sec2~21 Sec22 Sec23 94.5 66.2 14.8
Cahill & Genabith 06 f-structure (LFG) Sec2~21 Sec23 98.5 66.5
 Sec2~21 Sec23, len<20 98.7 70.8
Nakanishi et al. 05 PAS (HPSG) Sec2~21, len<20 Sec22, len<20 Sec23, len<20 90.8 77.3
Langkilde-Geary 02
(not corpus based)

feature-value
structure

250 million word
WSJ text

N/A Sec23, len<20 82.7 75.7

References
Bangalore and Rambow. 2000. Exploiting a Probabil-

istic Hierarchical Model for Generation. COLING.
Aoife Cahill and Josef van Genabith. 2006. Robust

PCFG-based generation using automatically ac-
quired LFG approximations. COLING-ACL ’06.

Cahill, A., Burke, M., O’Donovan, R., van Genabith,
J., and Way, A. (2004). Long-Distance Depend-
ency Resolution in Automatically Acquired Wide-
Coverage PCFG-Based LFG Approximations. In
Proc.ACL-04, pages 320–327, Barcelona, Spain.

Halvorsen P.-K.: Situation Semantics and Semantic
Interpretntlon in Constraint-Based Grammaa~s.
CSLI Report No. CSLl-8%lO1, Stanford 1987

Z. Kou and W. W. Cohen. Stacked graphical models
for efficient inference in Markov random fields. In
Proceedings of the 2007 SIAM Conference on Data
Mining (SDM), 2007.

I. Langkilde and K.Knight. 1998. Generation that ex-
ploits corpus-based statistical knowledge. In Proc.
COLING-ACL’98, pages 704–710.

I. Langkilde. 2000. Forest-based statistical sentence
generation. In Proceedings of the NAACL’00.

I. Langkilde-Geary. 2002. An empirical verification
of coverage and correctness for a general-purpose
sentence generator. In Proceedings of the INLG’02.

Miyao, Yusuke and Jun'ichi Tsujii. Probabilistic dis-
ambiguation models for wide-coverage HPSG
parsing. In the Proceedings of ACL 2005.

Y. Miyao, T. Ninomiya, and J. Tsujii. 2004. Corpus
oriented grammar development for acquiring a

Head-Driven Phrase Structure Grammar from the
Penn Treebank. In Proceedings of the IJCNLP-04.

Hiroko Nakanishi, Yusuke Miyao, and J. Tsujii. 2005.
Probabilistic Models For Disambiguation Of An
HPSG-Based Chart Generator. In Proc. IWPT-05.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2001.
BLEU: a method for automatic evaluation of ma-
chine translation. In Proceedings of the ACL’01.

Slav Petrov, Leon Barrett, Romain Thibaux and Dan
Klein, “Learning Accurate, Compact, and Inter-
pretable Tree Annotation”, in COLING-ACL ’06).

Reyle, U.: Compositional Semaaltics for LFG. In:
Reyle, U., Bohrcr, C. (eds.): Nabaral Language
Parding and Linguistle Theories. Dordrecht 1988

Ivan A. Sag, Thomas Wasow, and Emily M. Bender.
Syntactic Theory: A Formal Introduction, 2nd Edi-
tion, 608 pages, 1999, 2003

Mike White and Jason Baldridge (2003) Adapting
Chart Realization to CCG. In Proc. EWNLG’03.

Michael White, Rajakrishnan Rajkumar and Scott
Martin (2007) Towards Broad Coverage Surface
Realization with CCG In Proc. of the Workshop on
Using Corpora for NLG: Language Generation and
Machine Translation (UCNLG+MT).

Graham Wilcock , Yuji Matsumoto, Head-driven
generation with HPSG, Proc. the 17th international
conference on Computational linguistics, p.1393-
1397, August 10-14, 1998, Montreal, Quebec,
Canada

D. H. Wolpert, Stacked generalization, Neural Net-
works, vol. 5, pp241-259, 1992.

