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1 Introduction 

There have been plenty of non-statistical Natural 
Language Generation (NLG) methods in both 
top-down manner (Dymetman& Isabelle, 1988; 
Wedekind, 1988) and bottom-up manner (Shie-
ber et al., 1990). As Van Noord (1994) summa-
rized, the main problem of top-down approaches 
is the possibility of infinite recursion during gen-
eration, and the main problems of bottom-up ap-
proaches is the severe restriction on possible 
grammars and rather inefficient processing.  

Unlike parsing, for which word order is given, 
NLG may encounter factorial number of possible 
word orders (Carroll et al., 1999). This leads to 
potentially exponential time complexity even 
with carefully designed algorithm on packed 
chart. The fact that many arcs generated are 
never used in a full derivation tree has a signifi-
cant effect on scalability.  

Recent statistical NLG works (Langkilde, 
2000; White & Baldridge, 2003; Nakanishi et al., 
2005; White et al., 2007) use packed charts to 
sum out all possible parse trees during training, 
and to find best parse tree during generation. Mi-
yao & Tsujii (2005) report only 418 out of 500 
randomly sampled sentences were successfully 
generated with a HPSG grammar trained on Penn 
TreeBank, and some of them take extremely long 
time to generate. White et al. (2007) report that 
only 22% of test sentences are successfully gen-
erated with a CCG grammar trained from Penn 
TreeBank, and the search exceeds time limit for 
68% of the sentences. Therefore, for most of the 
sentences, they need to apply post processing to 
concatenate text fragments into a sentence. These 
results expose a dilemma of the need of a less 
permissive grammar to restrict search space to be 
affordable, and the need of a more permissive 
grammar to accept more unseen sentences. 

In this proposal, we present a fast top-down 
statistical generation algorithm with permissive 
CFG grammar. The algorithm, called Split-Emit, 
can be considered as a reversed shift-reduce al-
gorithm—with two operations split and emit as 
opposed to reduce and shift. It starts with the 
whole semantics and split it recursively, and has 
O(n) generation complexity with respect to size 
of the input semantics. In order to avoid the pos-
sible infinite recursion we add constraint to the 

split process which forbids the generation of 
node that already exists. To our knowledge, this 
is the first statistical top-down generator. 

2 The Semantic DAG 

Let’s first introduce how the semantics of a natu-
ral language sentence can be represented as a 
Directed Acyclic Graph (DAG). Following Na-
kanishi et al.’s (2005) work, we use Predicate-
Argument Structure (PAS) as the semantic repre-
sentation. For example, the sentence “He bought 
the book.” has the following four PASs: 
 

buy(e)∧ past(e)∧ARG1(e,x)∧ARG2(e,y) 
the(z) ∧ARG1(y) 
he(x) 
book(y) 

 
Each lowercase letter represents an entity, and 
the semantics of a sentence can be interpreted as 
a graph with entities as nodes (decorated with 
labels, e.g. “past tense”) and argument relations 
as edges. 
 

 
Figure 1 : Graph representation of semantics 

 
For the purpose of text generation, a semantic 
meaning M in PASs representation can be aug-
mented with a CFG tag L, and a head pointer p 
pointing to the entity in M that is going to be the 
head of the generated text. For example, if M is 
the same as Figure 1, different text may be gen-
erated from different heads or syntactic labels: 

<M, S, e>: he bought the book 
<M, NP, x>: he who bought the book 
<M, NP, y>: the book that he bought 

In this way, we maximally separate the semantic 
aspect of a piece of text (M) from its syntactic 
aspects (L and p).  

This representation is different from the origi-
nal PASs definition of Nakanishi et al.’s (2005) 
where each word corresponds to exactly one 
PAS. In this study, functional words like to, is, 



that are considered syntactic and have no seman-
tic representation.  

This representation is also different from 
HLDS (Hybrid Logic Dependency Semantics) 
employed by White and Baldridge (2003). In 
order to generate “the book that he bought” from 
HLDS, y:book needs to have an argument Gen-
Rel pointing back to e:buy, where GenRel is a 
general relation as in relative clause modification. 
In this study, this kind of information is consider 
syntactic and represented by head pointer p. 

For HPSG (Sag et al., 2003) information re-
lated to voice, tense etc are specified in syntactic 
structure. In our representation, this information 
is specified in semantic graph as labels to the 
nodes (e.g. passive(x), past(x)).  

In the rest of this proposal we assume that se-
mantic structures are representable as DAG. This 
is ensured by most of the current semantic theo-
ries, like Montague Semantics (MS), Discourse 
Representation Theory (DRT) and Situation Se-
mantics (SS) (Reyle 1988; Halvorsen 1987). As a 
future work we can also develop heuristic rules 
to break circles by duplicating some of the nodes. 

3 The Split-Emit Generation Process  

Here we describe a generative process that trans-
forms a semantic DAG to text. We assume that 
M is either atomic that can be directly trans-
formed into surface text (a word or phrase) or 
composite that can be split into two meanings M0, 
M1, so that M0 is to be generated before M1.  

Start with the tuple <M, L, p>. It is recursively 
splited until the semantics is atomic, and emits 
surface words as shown in Figure 1. After M is 
fully splited we get both a binary syntactic tree, 
and a piece of text (a sentence, if L=S, the "start" 
non-terminal of sentence).  

 
NP, y 

buy(e)∧ past(e)∧ARG1(e,x)∧ARG2(e,y) 
the(z) ∧ARG1(y); book(y); he(x) 

SBAR, e 
buy(e)∧ past(e) 
∧ARG1(e,x); he(x) 

NP, y 
the(z) ∧ARG1(y) 
book(y) 

S, e 
buy(e)∧ past(e) 
∧ARG1(e,x); he(x) 

DT, z 
the(z)  

NN, y 
book (y) 

 

NP, x 
he (x) 

VV, e 
buy(e)∧ past(e)

the book that he bought 
Figure 2 Text generated by split and emit  

 

This semantic splitting process concord with 
the Semantics Composition Principle: the seman-
tics of a constituent is the sum of semantics of its 
daughters (Sag et al., 2003). 

Note that sometimes M is splited to an empty 
semantic and a semantic equal to itself. These 
kinds of null splits permit the generation of func-
tional words not represented in the semantics 
such as the word “that” in Figure 2. 

With the assumption that semantic graph is a 
DAG, the task of graph splitting is reduced to 
decide which edge should be broken, the order 
and syntactic category for each side of the edge. 
However, with a permissive grammar like CFG 
(trained from TreeBank), it is very important to 
choose from possibly huge number of derivation 
trees for the same tuple <M, L, p>. We achieve 
this goal from two aspects. 

First, we reduce number of possible trees gen-
erated by exploring several regularities. From the 
Semantic Inheritance Principle (Sag et al., 2003) 
we assume that a mother node in derivation tree 
share the semantic head with one of its daughter. 
We also assume that at each split step, it is al-
ways one of the links around head node that gets 
broken, and the node on the other side of the 
broken link becomes head of the other half of 
semantics. As we know, in HPSG, syntactic head 
and semantic head are the same except for some 
head adjunct-daughters (Wilcock & Matsumoto, 
1998). This helps justify that when two constitu-
ents combined into a new constituent, it is al-
ways their heads that are interacting with each 
other, both syntactically and semantically 
(Probably need more justification here). This 
assumption greatly reduces the search scope of 
links to be broken, and continently help specify 
the semantic heads. 

Second, we can define features and scoring 
functions to rank the generated sentences. White 
& Baldridge (2003) and White et al. (2007) score 
legitimate (HPSG) derivation trees with a variety 
of factored trigram models over words, POS tags 
and supertags. Nakanishi et al. (2005) score le-
gitimate (CCG) derivation trees with a log-linear 
model based on lexicalization, bigram and syntax 
features. In this work, instead of find the best 
tree in bottom-up dynamic programming style, 
we use efficient method in top-down greedy style. 

4 Dealing with Infinite Recursion 

To propose a top-down approach, we need to 
deal with the problem of possible infinite recur-
sion during generation (Van Noord, 1994). We 



find this problem roots in the inadequacy of CFG 
labels. For example the sentence “the book was 
bought by him”. Both the constituent spanning 
“was bought by him” and “bought by him” have 
the same CFG label VP. This causes a generator 
to produce potentially infinite number of “was”. 

We think the best solution is to augment the 
CFG tag to distinguish such syntactic differences. 
Probably with tag splitting method of Petrov et al. 
(2006). In this study, however, we take a simpler 
solution, by disallowing any split action which 
generates node that has already been generated 
(with same semantics and syntactic category).  

5 The Split-Emit Algorithm  

The Split-Emit Algorithm generally has a sym-
metric structure to the well known shift-reduce 
parsing algorithm as the following. It assumes 
function split() that decide which part of the se-
mantics should be realized first and decide new 
syntactic category for both parts. It also assumes 
a function lexicalize() that translates atomic se-
mantics into surface form, and decideAction() to 
decide which action to take. Same as shift-reduce 
parsing, it can run in best-first (greedy) mode, or 
beam search mode. In beam search mode, top K 
sentences are generated and ranked based on 
multiplication of probability of all actions (de-
fined in 5.1) taken in the derivative of a sentence. 
We also compare to a more sophisticated ap-
proach, in which ranking is based on log linear 
models similar to White et al. (2007) and Naka-
nishi et al. (2005). 

 
function splitEmit(<M,L>) 
Input: <semantics M, syntax label L, head p> 
Output: sentence w 
   S=empty stack [] 
   while(M!=null or L!=[]) 
      if M=null 
         <M, L, p>=S.pop() 
      action=decideAction(<M, L ,p>) 
      if action=EMIT 
         w+=lexicalize(<M,L ,p >) 
         M=null 
      else if action=SPLIT 
         (<M0,L0,p0>, <M1,L1,p1>)= split(<M,L,p>) 
         S.push(<M1,L1,p1>) 
         <M,L>=<M0,L0,p0> 
return w 

 
Here we give an implementation with PASs 

semantic representation, and split function based 
on stacked learning. 

5.1 Splitting the Semantics 

From assumption in section 3, the edges in con-
sideration are the ones around the head semantic 
node. For an edge e, we denote the head node v0 
and the node on other side of e v1. We extract for 
each edge the following set of features:  

 syntax label of the head L,  
 labels in v0, labels in v1,  
 argument type (and direction  (v0 v1 v.s. 

v1 v0) of e,  
 and possibly other global and local features.  

Then train a maximum entropy classifier to pre-
dict this edge into the following classes:  

 Any combination of D*L0*L1,  
 NoSplit.  

D={forward, backward} decides which side 
should be realized first. L0, L1, are the syntactic 
categories assigned to each side. NoSplit means 
this edge should not be broken. During genera-
tion, the edge with the highest probability of any 
D*L0*L1 category becomes the split point, and 
this probability is assigned to this action, which 
will be used to rank sentences, and restrict the 
beam width (top k actions sorted by their prob-
abilities go into the beam). 

However, this design has the apparent draw-
back that decisions of edges are made independ-
ently. Therefore, we apply stacked learning 
(Wolpert, 1992; Kou & Cohen, 2007) which per-
mits the use of efficient classifier in place of 
more computationally-intensive joint inference 
models. Feature vector of each edge are aug-
mented by the following template (Kou & 
Cohen, 2007): 

 For each category c, sum of the expectation 
given by classifier of previous level for all the 
edges in consideration. 

Number of stacking can be determined in ex-
periment. 

Since the algorithm break one link from the 
DAG each time (except for the null-splits), about 
n-1 splits are needed to break a semantic M of 
size n, and time complexity is about O(n). 

5.2 Lexicalization and Decision of Actions  

In this proposal, the lexicalization and decision 
functions are very simple. If the semantic graph 
contains only one node, then the action is EMIT. 
Otherwise, the action is SPLIT.  

Lexicalization is done using a look up table 
generated from a training corpus with items like  

buy(e)∧ past(e)→bought 
On the left-hand-side is a node observed in the 
corpus, on the right-hand-side the most probable 



word associated with this node in the corpus. If 
the whole LHS cannot be found in the look up 
table, then the lexical label (“buy” in the above 
case) is emitted as a back-off. 

6 Evaluation  

Training, developing, and testing data are seman-
tic representations derived from Penn TreeBank 
section 2-21, 22, and 23. There are two possible 
ways to derive semantic representations (features 
and predicate-argument relations) and derivation 
trees for each sentence. First is HPSG derivation 
trees of Penn TreeBank. Miyao et al. (2004) cre-
ated more than 250 heuristic rules to transform 
Penn CFG trees to HPSG trees. Second is CCG 

derivation trees of Penn TreeBank. White et al. 
(2007) use about two dozen rules to augment 
CCG trees with logical forms. Third is LFG 
derivation trees of Penn TreeBank. Cahill et al. 
(2004) developed automatic system to annotate f-
structure to CFG trees. Since all above tree se-
mantic representations contains predicate-
argument structure, it is strait forward to extract 
semantic DAG from them. 

Same as previous works (Table 1), generation 
accuracy can be measured by BLEU score (Pap-
ineni et al., 2001) and exact matches. Since the 
proposed system does not handle semantic graph 
that are not DAG, we ignore those during evalua-
tion. 

 
Table 1 Previous works 

Work Semantics 
Format 

Train Tune Test Cvg BLUE Exact 

White et al. 07 HLDS (CCG) Sec2~21 Sec22 Sec23 94.5 66.2 14.8 
Cahill & Genabith 06 f-structure (LFG) Sec2~21  Sec23 98.5 66.5  
  Sec2~21  Sec23, len<20 98.7 70.8  
Nakanishi et al. 05 PAS (HPSG) Sec2~21, len<20 Sec22, len<20 Sec23, len<20 90.8 77.3  
Langkilde-Geary 02 
(not corpus based) 

feature-value  
structure 

250 million word
WSJ text 

N/A Sec23, len<20 82.7 75.7  
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