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Abstract 

 

We compare different parse tree representa-
tions for the task of Chinese Semantic Role 
Labeling (SRL), including dependency and 
constituency parse trees, two tree pruning 
methods, and neighbor features. Three learn-
ing models are compared. By using SVM clas-
sifier with neighbor features and pruning tree 
to phrase level we achieve significantly better 
speed and accuracy than state of the art Chi-
nese SRL systems. 

1 Introduction 

Despite of the large body of existing work on 
SRL in English, there has not been much work 
on exploring different tree representations for 
Chinese. For tree structures derived for a sen-
tence, the node labels are co-dependent. One way 
to express this codependency is to add global 
constraints (Punyakanok et al., 2004; Tromble & 
Eisner, 2006). Another way is to do joint predic-
tion with model such as tree CRF (Cohn & Blun-
som, 2005), where decision of one node is de-
pendent to its neighbors on the tree. In this study 
we compare a tree CRF approach with a third 
approach that adds to each node features from its 
neighbor nodes. In this way, information propa-
gates around the tree without the use of a joint 
decisions model. Furthermore, we found in our 
study that simply pruning tree to phrase level effec-
tively reduced the training time without sacrific-
ing accuracy. 

2 Description of Approach 

2.1 System Architecture 

Most current SRL approaches include three 
stages: first, annotate the sentences by constitu-
ency or dependency parser, then apply a classi-

fier (like SVM) to each constituent based on 
carefully engineered features, and finally per-
form joint scoring based on hard or soft con-
straints (Punyakanok et al., 2004; Tromble & 
Jason Eisner, 2006). Xue and Palmer (2004) de-
composed the second stage into three steps. First, 
some negative nodes are filtered out with heuris-
tics that exploit the syntactic structures repre-
sented in the parse tree. Second, a binary classi-
fier is applied to further separate argument nodes 
from non-argument nodes ("argument identifica-
tion"). Finally a multi-category classifier is ap-
plied to assign the semantic role labels to the 
positive samples ("argument classification").  

In this study we use the same basic approach 
as Pradhan et al. (2004). The classifier is an 
SVM, and the joint scoring step simply removes 
overlapping constituents. The predicates are 
given in the task, and for each predicate in a sen-
tence, stages 2 and 3 are applied. 

2.2 Tree Pruning  

Tree pruning is known to improve both speed 
and accuracy of SRL. We explored two pruning 
strategies. One is to prune the tree to the phrase 
level (to the lowest NP nodes in parse tree). An-
other is Xue and Palmer’s (2004) more aggres-
sive rule: first include all nodes along the path 
from the predicate to the root, then include all 
their children; if any of these nodes is PP, then 
also include its immediate children.  

2.3 Features 

SRL differs from lower-level NLP tasks such as 
POS tagging in that it has a fairly large feature 
space; as a result, linguistic knowledge is crucial 
in designing effective features for this task. New 
features have continuously been proposed in the 
past years (Gildea & Jurafsky, 2002; Surdeanu et 
al., 2003; Pradhan et al., 2004; Xue & Palmer, 
2004, 2005). In this study, we implemented 
many of the above features, excluding those that 



need more than a syntax parser can produce (e.g. 
named entity, voice, and etc). Furthermore, we 
explore adding features from neighbor nodes like 
mother, left/right sibling. All the implemented 
features are listed as following: 
1. POS: Part-of-speech, or non-terminal tags  
2. W: The word form. For non-leaf node (with 

span length <=3), this feature is the sequence 
of words covered by its span. 

3. h.{POS, W}: Features from the head word 
4. NVO: Coarse grain POS, which only distin-

guish Noun, Verb, and Other. It is automati-
cally produced from the first letter of POS 
(N, V, or other) 

5. p.{POS, POS+W, NVO}: Path from each 
node to the predicate, decorated with  POS, 
POS + headword, or NVO 

6. p.{POS, POS+W, NVO}.{b, a}: Half path 
before/after common ancestor of a node and 
the predicate 

7. position: If the span of a node is before, over, 
or after the predicate {b,o,a}  

8. level: Level of this node on the tree {0,1,…} 
9. pred: If this node is the predicate {true,false} 
10. verb: Text of the predicate 
11. {l,r,m}.{POS,W}: POS or word from 

neighbors (left/right siblings, and mother)  
12. VC: Verb sub-category from FrameNet 

(Fillmore, et al, 2001) 

2.4 MaxEnt and Tree CRF Model 

As a way to express codependency among nodes, 
tree CRFs have been used for English SRL 
(Cohn and Blunsom, 2005), with the model 
structure derived from pruned constituency parse 
trees. Each non-terminal node (constituent) in the 
parse tree maps to a node in the graphical model, 
and edges in the graphical model are the same as 
the ones in the parse trees.  

Formally, in a CRF the conditional probability 
for the labels given the observation is defined as: 
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where C is the set of cliques, fi and  λi are the 
factors and corresponding weights. Z(x) is the 
partition function. For a node clique in our model, 
each factor is defined over the label and a feature 
defined in the previous section (e.g.  
y3=ARG1&POS=S). For an edge clique, each 
factor is defined over labels of both nodes and a 
feature on the child (e.g. y1.label=NULL & 
y3.label=ARG1 & y3.POS=S) (Figure 1). For 

dependent tree, features come from the highest 
collapsed constituency node. When only node 
clique is used, the model falls back to maximum 
entropy model. Different than SVM mode, no 
overlapping filter is applied at the joint scoring 
stage, for MaxEnt and tree-CRF. 

 

 
Figure 1: Node and edge cliques on parse tree 

 

3 Experiment  

3.1 Setup  

In this study we use gold standard constituency 
tree from Chinese TreeBank 5.0. We also derive 
dependency tree by applying Dan Bikel's(2004) 
head finding rules to the constituency trees. We 
first identify the head child of each node, and 
then recursively move head children up the tree. 
Therefore, the resulting trees only have POSs 
and words tagged on the nodes, and no depend-
ency relations. Similar to Hacioglu (2004), a 
node is tagged as an argument if its word span 
matches a span specified in PropBank 1.0 (Xue 
and Palmer, 2003).  

We use 99 files (1.fid to 99.fid) for testing and 
all the remaining 791 files (100.fid to 1151.fid) 
for training. We also use TreeBank gold standard 
parses, and report the standard precision, recall 
and F-measure.  

For the SVM implementation, we modified the 
implementation of ASSERT 1  (Pradhan et al., 
2004) to accept our features, and the same pa-
rameter settings are applied. For the MaxEnt and 
CRF implementations, we used Sutton’s GRMM 
toolkit2, with tree belief propagation.  

For this study, Xue and Palmer (2005) and 
CASSERT performance would be natural base-
lines. In order to compare to CASSERT, we re-
train and test it with the same data settings. Xue 
and Palmer (2005) use pre-released version of 
PropBank, therefore only 661 files (100.fid to 
931.fid) are used for training (about 84% of ours). 

                                                 
1 http://oak.colorado.edu/assert/ 
2 http://mallet.cs.umass.edu 



Run Representation SVM MaxEnt TreeCRF 
ID Feature T1 T2 #nodes/tree PR RC F1 Time PR RC F1 Time PR RC F1 Time
1 C no no 86.8 89.6 85.7 87.6 90 89.0 85.2 87.1 185 89.1 85.1 87.1 2750
2 C yes no 48.1 90.0 88.2 89.1 41 89.5 87.4 88.4 141 89.3 87.2 88.2 1360
3 C+vc yes no 48.1 90.3 88.3 89.3 44 89.8 87.4 88.6 149 89.5 87.3 88.4 1384
4 C+vc+nb yes no 48.1 91.0 89.0 90.0 45 90.5 88.2 89.3 154 90.1 88.0 89.0 1394
5 C no yes 17.7 89.0 87.4 88.2 8 88.3 86.9 87.6 56 88.3 87.0 87.6 475 
6 C+vc no yes 17.7 89.3 87.8 88.5 9 88.7 87.0 87.8 61 88.4 87.0 87.7 492 
7 C+vc+nb no yes 17.7 90.1 88.2 89.1 11 89.4 88.0 88.7 57 89.3 87.8 88.5 460 
8 C yes yes 13.9 89.0 87.0 88.0 6 89.1 88.2 88.7 28 89.1 88.1 88.6 233 
9 D no no 40.8 89.2 80.0 84.4 26 85.7 85.0 85.3 168 86.4 84.4 85.4 1748

10 D yes no 20.6 89.4 85.0 87.1 10 87.8 85.3 86.5 76 87.7 86.4 87.0 519 
11 D no yes 14.2 89.6 81.1 85.1 7 86.5 84.8 85.6 46 86.6 85.2 85.9 344 
12 D yes yes 9.8 90.0 81.0 85.3 5 84.9 83.3 84.1 35 86.9 84.6 85.8 263 

Table 1: Feature Exploration with SVM. D=dependency tree, C=constituency tree, vc=verb class, nb= neighbor 
features, T1= Prune to phrase, T2= Prune to predicate path. Boldfaced figures are statistically significant within 

same model and same type of tree. Training time measured in minutes (dual-core 3.0GHz CPUs). 
 

3.2 Comparing Tree Representations 

For the purpose of exploration, we randomly se-
lected 10% of the sentences from the training set 
for training. Testing is still on the 99 file test set. 
Table 1 compares performance with different 
tree representations and learning models. 

Comparing run 1 with runs 2~7 we can see 
that pruning the tree not only dramatically re-
duces the tree size and training time, but also 
improves the classification accuracy. Both prun-
ing strategies improve the result. Pruning to the 
phrase level (T2) significantly improves both 
precision and recall. Pruning to predicate path 
(T1) although improves recall, slightly hurts pre-
cision. T1 can cut down tree size more drasti-
cally than T2 (resulting in a 75% training time 
reduction) but reduces F1 from 0.5%~0.9%.  

Comparing runs 2, 3 and 5, 6 we can see that 
the verb class feature (vc) slightly improves the 
result. This is similar to the observation from 
Xue and Palmer (2005). Neighbor features (nb) 
improve F1 by about 0.7%. However, contrary to 
our expectation, the tree CRF does not improve 
accuracy via joint inference. Its accuracy is 
slightly worse than the linear models, both with 
or without neighbor features. 

From runs 9~12 we can see that dependency 
trees are smaller and thus are trained faster. 
However, their accuracy is worse than constitu-
ency trees. For the SVM model, dependency 
trees generally produce similar precision, but 
recall is hurt by the overlapping filter. For Max-
Ent and TreeCRF where there is no overlapping 
filter, precision and recall are still slightly worse 
than their constituency tree counterparts. We be-
lieve that the constituency tree provides a more 

natural representation for the SRL task than de-
pendency tree. For example in Figure 2, the top 
NP node and the NN node spanning 文件 can 
each have distinctive feature set in the constitu-
ency tree, which gives model finer grained in-
formation for its decision. However, these two 
nodes are merged into one in the dependency tree 
and the distinction is lost. 

 

 
Figure 2: Example, HC=head child 

3.3 Comparing Different Learners 

In this subsection we compare the SVM, Max-
Ent, and CRF models with the best tree represen-
tation of the previous section (run 4 with 
C+vc+nb+T1). Table 2 shows the main result 
with different models and data sizes. To reduce 
variance for small training data sets, we down-
sample 10 independent training sets for experi-
ments with 0.1%~10% data, and average the 
scores. We can see that although the SVM 
method is not as good as the other methods when 
training data size is small, it gets the best result 
as the data size gets larger. Considering that we 
use the same SVM classifier as CAssert, and fea-
tures used are very similar, the gain in time and 
F1 are attributed to tree pruning and the use of 
neighbor features. CAssert has better perform-
ance with small data sizes, but lower perform-



ance with larger data sizes. This might be be-
cause CAssert uses fewer features. After ac-
counting for the fact that Xue & Palmer (2005) 
use less training data, our SVM approach still 
performs better by 2% (Table 2). 

We had expected the tree CRF model to out 
perform SVM and MaxEnt as it performs joint 
prediction. However, it is true only when the data 
size is small. SVM and MaxEnt compensate lo-
cal decisions by better utilizing neighbor features 
(mother, head, and siblings) and outperform tree 
CRFs when larger data set is available.  

The training times for all the methods are 
quite predictable. The CRF model is one order of 
magnitude slower than the MaxEnt model. Both 
SVM and MaxEnt are relatively simple models. 
The differences between their training time may 
be due to difference of optimization procedure, 
or just the differences between C++ and Java 
implementations. All the methods have empirical 
complexities around O(n1.5) (measured in minu-
ets), where n is the number of training samples. 

 
Data Method PR RC F1 Time  
32,363 SVM 94.1 93.4 93.8 1064 
(100%) MaxEnt 93.5 92.6 93.1 3051 

 CRF 93.5 92.4 93.0 34142 
 CAssert 90.0 90.2 90.1 1502 

3,236 SVM 91.0 89.0 90.0 45 
(10%) MaxEnt 90.5 88.2 89.3 154 

 CRF 90.1 88.0 89.0 1394 
 CAssert 87.6 86.7 87.1 100 

324 SVM 86.3 78.3 82.1 1.6 
(1%) MaxEnt 85.8 77.8 81.6 5.4 

 CRF 85.9 78.4 82.0 61 
 CAssert 82.4 80.3 81.3 3.3 

32 SVM 72.9 51.2 60.2 0.05 
(0.1%) MaxEnt 73.4 52.2 61.0 0.23 

 CRF 75.8 54.3 63.3 1.8 
 CAssert 74.3 56.5 64.2 0.16 

84% X&P05 91.4 91.1 91.3 N/A 
Table 2: Compare Different Learners. Boldfaced fig-
ures are statistically significant within same data size 

4 Conclusion and Future Directions 

This study compares different tree representa-
tions and models for the task of Chinese SRL. 
We found that simpler models like SVM and 
MaxEnt can out perform tree CRF, if enough 
training data is given. However, using depend-
ency trees hurt accuracy. SVM classifier with 
neighbor features and pruning tree to phrase level 
can achieve significantly better speed and accu-
racy than state of the art Chinese SRL systems. 

One potential improvement to the current ap-
proach is to apply joint scoring approaches like 
those described by Punyakanok et al. (2004) or 
Tromble & Eisner (2006). 
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