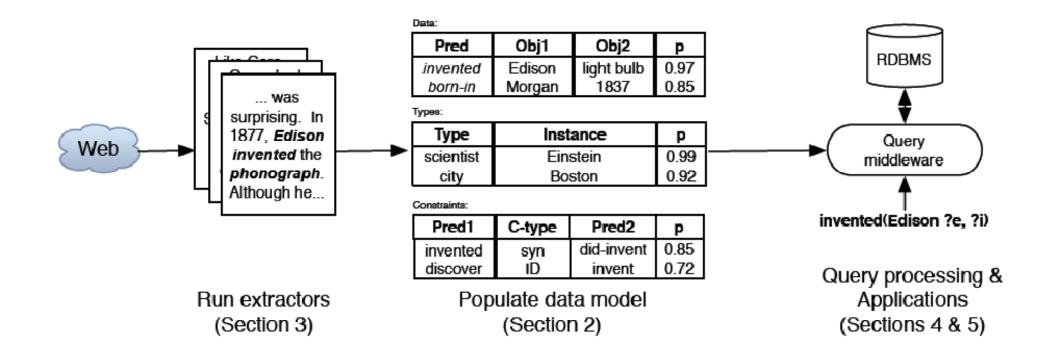
Advanced IR Seminar 2007, LTI

Structured Querying of Web Text Data

Ni Lao, Le Zhao 2007.11.5

Web Scale IE

- IE has becomes unsupervised, domain-independent, and scalable
 - DIRT(01)
 - Given a predicate
 - X manufactures Y
 - Automatically extract its synomyns
 - X produces Y; X markets Y; X develops Y; X is supplier of Y; X ships Y; etc.
 - KNOWITALL(05)
 - Given a set of universal patterns for extraction
 - NP "and other" <class1>
 - NP "is a" <class1>
 - Given a set of predicates
 - "scientist", "invented"
 - Automatically extract facts of these predicates
 - scientist(Einstein), invented(Edison, light bulb)
 - TEXTRUNNER(07)
 - Extract all facts in one pass of the corpus,
 - without any kind of human input
- Trend
 - No human labeling
 - No predefined schema


Structured Access to The Web

- What is the opportunity?
- Observation
 - Some information need can be better fulfilled by structured query
 - List output is preferred
 - Constrained by some semantics
 - Need indication of popularity for each answer
 - "list all countries that have donated money to the Gujarati earth quake, how much they donated, and when"
- The semantic web
 - A vision of information that is understandable by computers, so that they can perform more of the tedious work involved in finding, sharing and combining information on the web [wikipedia]
 - "list the prices of flat screen HDTVs larger than 40 inches with 1080p resolution at shops in the nearest town that are open until 8pm on Tuesday evenings"
 - (tried but with no success yet) to provides a standard (like RDF) for websites to publish information
- The OIE paradigm
 - instead of publishing standard
 - Achieve semantic web by unsupervised extraction and Structured Access

Contributions (of This Work)

- A new paradigm of structured access to the web
- A data model and query scheme
- Some preliminary experiment results

The Big Picture

- The dream of a DB people
 - The information need of users can be satisfied by a RDB
 - And the structural data can be extracted from the web

Web Data Model

Base-level concepts (with probabilities)

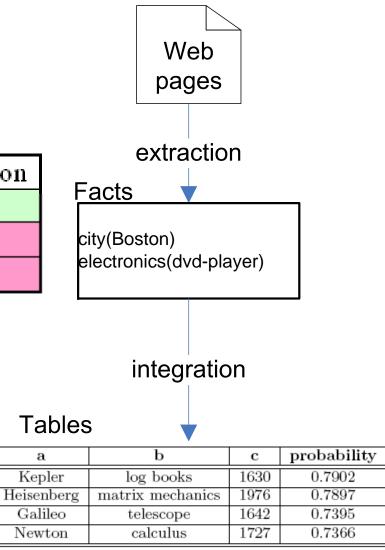
Concept	e.g.	Extractor
facts	discovered(Edison, phonograph)	TextRunner [4]
	sells(Amazon, PlayStation)	
Semantic types	city(Boston)	KnowItAll [20]
(IS-A relation)	electronics(dvd-player)	
synonymy	invented(x, y) = has - invented(x, y)	DIRT [29]
tropoymy	$invented(x, y) \rightarrow discovered(x, y)$?
Functional	has-capital(x, y) \rightarrow capital(y)	?
Dependency (FD)		

- Query Scheme
 - Use Select-Project-Join (SPJ) queries
 - SPJ is single Block SQL with no "Group By"
 - E.g. q(?x, ?y) :- died-in(<scientist> ?x, 1955 ?y)
 - Result is a synthetic table

Query Processing

- For non-projecting queries
 - A proximate top-k ranking algorithm similar to [Theobald, et al 2004]
- For projecting queries (need aggregation)
 - q(?s) :- invented(<scientist> ?s, ?i)
 - Probability of inventions need to be sumed out for each scientist
 - Challenges
 - Performance: potentially large number of item to sum over
 - Large number of low-quality tuples boost a poor answer
 - Solution
 - A panel of Experts: sum only the top k tuples (k=5)
 - An expert is a tuple with a score
 - e.g. invented(Tesla, Fluorescent-Lighting),0.95

Experiment Result


- Results of two queries are compared
 - q(?s) :- invented(hscientisti ?s, ?x)
 - Goolge result of "scientist invented"
 - "scientist" is a misleading word. These people are usually call physicist, chemist archeologist etc.
- Should define concrete tasks for more objective evaluation
 - QA tasks
 - Information distillation tasks

— ..

Alternative Models

 Three (structural access) models differ at how much work is done offline

	Extraction	Integration
Schema Extraction Model	offline	offline
ExDB	offline	online
Text Query Model	online	online

Schema Extraction Model

- IE system extract only one type of information
 - object-attribute-value (e.g. Edison, invention, phonograph)
- Try to derive a single best schema for the whole web by optimizing
 - completeness (all extractions from text appear in the output)
 - simplicity (the output has few tables),
 - fullness (the output database has no NULLs)
- Pros
 - No need to write SQL query!
 - For the user who are trying to make sense of a domain, the tables are already populated offline
- Cons
 - Not easy to optimize
- Solution

Text Query Model

- No information extraction offline
- Instead Offers users a query language that does extraction online

- Pros:
 - Flexibility of expressing information need
- Cons:
 - query time performance
- Solution:
 - text indexing techniques
 - e.g. neighbor index, multi-gram index [8, 11]

Trends

- The Pace of Web Scale IE Is Fast
- Going Beyond Keywords
 - Benefit: reduced the representation gap
- Going Web Scale
 - Need light weight methods
- Going Open Domain & Unsupervised
 - Benefit: scalabity
 - Challenge: uncertainty at the schema level
- Going Probabilistic
 - Markov Networks

THE ENDTHANKS

Challenges

• Ambiguity

- "Java", "John Smith", "develop"