
Probabilistic Model for Contextual Retrieval
Ji-Rong Wen

Microsoft Research Asia
Beijing, China

jrwen@microsoft.com

Ni Lao
Tsinghua University

Beijing, China

noon99@mails.tsinghua.edu.cn

Wei-Ying Ma
Microsoft Research Asia

Beijing, China

wyma@microsoft.com

ABSTRACT
Contextual retrieval is a critical technique for facilitating many
important applications such as mobile search, personalized search,
PC troubleshooting, etc. Despite of its importance, there is no
comprehensive retrieval model to describe the contextual retrieval
process. We observed that incompatible context, noisy context
and incomplete query are several important issues commonly
existing in contextual retrieval applications. However, these issues
have not been previously explored and discussed. In this paper,
we propose probabilistic models to address these problems. Our
study clearly shows that query log is the key to build effective
contextual retrieval models. We also conduct a case study in the
PC troubleshooting domain to testify the performance of the
proposed models and experimental results show that the models
can achieve very good retrieval precision.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Human Factors, Performance, Theory

Keywords
Contextual Retrieval, Probabilistic Model, Query Expansion,
Query Log

1. INTRODUCTION
Contextual retrieval is one of the major long term challenges in
information retrieval. In a recent workshop report [1], contextual
retrieval is defined as “combine search technologies and
knowledge about query and user context into a single framework
in order to provide the most ‘appropriate’ answer for a user's
information needs”. In our organization, we are currently
exploring applying contextual retrieval methods on the following
two applications:

Mobile search – In the last decade, the dramatic increase in the
use and availability of mobile devices such as cellular phones and
personal digital assistants (PDAs) has made it more realistic to

access information anytime and anywhere. Context-aware mobile
search is a search paradigm in which applications can discover
and take advantage of contextual information (such as user
location, time of day, nearby people and devices, user activity,
user profile, etc.). When a user submits a query “bus”, search
service could suggest bus routes with proper location and time
schedule. Better retrieval precision is demanded in mobile search
due to the limited bandwidth and display screen of mobile devices.

Context-aware PC troubleshooting – Traditionally, in
technical support centers, when a customer send in a problem,
information retrieval tools are used to find documents containing
solution to the problem. Considering that most customers are not
PC experts, their problem descriptions usually are inaccurate.
Directly using customers’ problem descriptions to retrieval
relevant documents often cannot get satisfactory results. We are
investigating a more advanced retrieval technique for PC
troubleshooting by taking advantage of “PC context”. Generally,
when customer submits a problem to the support center, the
current state information in his/her computer could be collected
simultaneously. The state information contains very important
cues about the root causes of the current problem. We could treat
state information as the context of the problem description (or
query) and view the PC troubleshooting as a typical contextual
retrieval application. In section 4 and 5, we will show how
contextual retrieval could greatly improve the retrieval
performance of PC troubleshooting.

Seemingly, the above two applications are quite different. But
after working on them for some time, we found that they face very
similar challenges in essence. More specifically, the following
issues are common in them:

� Incompatible context: in previous contextual search and
personalized search works, query, context and document are
made up of the same kind of component – word. Thus it is
easy to accommodate the context data into the text retrieval
framework. In many works, context is simply combined with
query to construct an expanded query [7] [10]. However, for
the two applications we show above, the component of
context is totally different from that of query and document.
For example, in the PC troubleshooting application, context
contains low-level state information of computers. It is
impossible to directly measure the similarity between
context and document. Thus, simply incorporating context
into query does not work.

� Noisy context: most previous works treat context as noise-
free information. This may be true for some kinds of explicit
contexts such as user profiles. But for applications where
implicit contexts are collected automatically (just as in our
cases), a large portion of contextual data may be irrelevant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’04, July 25-29, 2004, Sheffield, South Yorkshire, UK.
Copyright 2004 ACM 1-58113-881-4/04/0007...$5.00.

to the current query. Noisy contextual information may
negatively affect the retrieval performance. Another
viewpoint to this problem is related to how to distinguish
context-sensitive query and context-free query. If noisy
context information could be accurately filtered, context-
sensitive query could benefit from correct context and
context-free query will not be biased by irrelevant context.

� Incomplete query: in contextual retrieval applications, users
usually do not provide complete descriptions about their
information needs. In the mobile search application, it is
inconvenient for users to accurately describe their query
purposes in a small device on the go. For PC
troubleshooting, common users only know the symptoms of
problems. They are not PC experts and thus can only
provide inaccurate description of the problems. Therefore,
in our view, the aim of contextual retrieval is not only to
constrain queries but also to expand the queries to more
complete and precise descriptions of the information needs.

These issues extensively exist in many contextual retrieval
scenarios. However, despite that there are a lot of works about
personalized search and contextual search, to our best knowledge,
there is no a uniform framework to clearly address the issues.
However, we think such a kind of models is very crucial to
explore core problems of contextual retrieval in a systematic way.

In this paper, we describe how to use past query sessions in query
logs to build probabilistic models to tackle with these issues.
Query logs record past query sessions across a time span, and we
could obtain a contextual search history about what documents
are taken as good answers to what queries in certain contexts.
Through the logs, probabilistic correlations among query terms,
context elements and document terms could be built. Correlations
between context and document could be used to solve the
incompatible context problem, correlations between query and
context could be used to filter out noisy contextual information,
and correlations among query, context and document could be
utilized to generate more accurate and complete query and thus
solve the incomplete query problem.

Based on the correlations, we propose four probabilistic models to
generate expansion terms for contextual retrieval. We also
conduct a case study to use the models to troubleshooting PC
problems. Our experimental results show that the proposed
models can effectively achieve good retrieval performance. This
case study actually motivates the main ideas in the paper and we
hope that the experiences learnt from it could be extended to other
applications.

The rest of the paper is organized as follows. Section 2 gives a
general description of our methodology and discuss the
correlations among query, context and document. Section 3
describes four probabilistic models for generating expansion
terms for contextual retrieval. Section 4 introduces our case study
of using the models in the PC troubleshooting application. We
report our experimental results in Section 5. We discuss related
work in Section 6 and conclude the paper and discuss future work
in Section 7.

2. METHODOLOGY
A good model for contextual retrieval should correctly interpret
user’s information need, which is partially represented by both the

query and corresponding context respectively. Also, the
information need should be translated to the “language of
document” to facilitate effective document retrieval. However, as
we already pointed out, the three inherent issues in contextual
retrieval applications make it difficult to find such a good model.
First, the incomplete query and noisy context issues obstruct the
accurate capture and interpretation of user’s information need.
Second, the incompatible context issue not only affects the
understanding of information need but make it hard to construct
the connection between context and document.

Obviously it is impossible to build a good model solely based on
the document set. In this study, we investigate how to utilize
query logs to meet the challenges.

Query log records past query sessions. A query session in
contextual retrieval typically records a query-context-document
sequence.

Query session := <query, context> [clicked document]*

Each session contains one query, its corresponding context and a
set of documents which the user clicked on or labeled (which we
will call clicked documents). The central idea of our method is
that if a set of documents is often selected for the similar queries
in similar contexts, the terms in these documents are strongly
related to the terms of the queries and elements in the contexts.
Also, if similar queries and similar contexts frequently co-occur in
the logs, the terms in the queries are tightly correlated to elements
in the contexts. Thus probabilistic correlations among query terms,
contextual elements and document terms can be established based
on the query logs, as illustrated in Figure 1.

Figure 1. Query sessions build the correlations among query
terms, contextual elements and document terms

Mutual information is a measure of the statistical dependency
between two random variables based on Shannon's entropy and it
is defined as the following:

��
�

�
��
�

�=
)()(

),(
ln),(

bpap
baP

baI

Taking query logs as a bridge, we could use mutual information to
determine the degrees of correlations among query terms,
contextual elements and document terms (Figure 2).

Figure 2. Mutual information among query terms, contextual
elements and document terms

One important assumption behind this strategy is that query,
context and document are tightly correlated in a query session.
This assumption apparently doesn’t hold for all query sessions.
User may submit a query irrelevant to his/her context, user may
search for something different from his/her habits, and user may
also wrongly click a document or shift his/her intention when
browsing the retrieval results. However, in the long run with a
large amount of log data, the query sessions allow us to find
significant correlations from a statistical point of view. Similar
observations have been made in [6] [16].

[6] also pointed out that there is a big gap between term usages of
queries and documents and a probabilistic model built through log
mining could effectively bridge the gap. In this study, we further
extend the previous utilizations of query logs to tackle the
contextual retrieval problems. After building the correlations
among query terms, contextual elements and document terms,
models could be constructed to estimate “good” document terms
based on a query and context. By using these document terms to
expand the original queries, it is expected to retrieval good
documents matching the information need represented by both
query and context. With this strategy, we could easily address the
mentioned three issues of contextual retrieval. With the
correlations between contextual elements and document terms,
incompatible context could be translated to proper document
terms and thus retrieve documents related to the context.
Correlations between query terms and contextual elements could
be applied to filter contextual elements not related to the query.
For the incomplete query issue, correlations among query terms,
contextual elements and document terms could be used together to
generate good expansion terms to make the query more complete
and effective for retrieval.

3. MODELS FOR CONTEXTUAL
RETRIEVAL
In this section, based on mutual information among query, context
and document, we propose several probabilistic models to
generate expansion terms for facilitating contextual retrieval.

3.1 Model 1: Context Only Model
The first model is a simple and intuitive one: document terms
tightly correlated to context are chosen as expansion terms to
modify the original query.

�
∈

==><
Cc

i
i

cdICdICQdM),(),(),|(1

where I(d, C) is the mutual information between context and
document term. In terms of the manner of combining query and
context, this model is similar to traditional solution to contextual
retrieval. However, in our case, expansion terms do not directly
come from the context but from documents correlated to the
context. In this way, the incompatible context problem could be
overcome.

3.2 Model 2: Query-Context Independent
Model
The main shortcoming of Model 1 is that expansion terms are
purely generated from context and thus are not correlated to query.
As a context element may appear in a lot of query sessions
containing diverse queries, irrelevant terms related to the context
but not to the current query could be inappropriately chosen as
expansion terms. Our second model uses query and context
together to control the expansion process.

��
∈∈

+=
+=

><=><

Qq
j

Cc
i

ji

qdIcdI

QdICdI

CQdICQdM

),(),(

),(),(
),,(),|(2

where I(d, Q) is the mutual information between query and
document term.

The advantage of Model 2 over Model 1 is that it will assign
higher weights to document terms tightly correlated to both the
query and context.

In this formula, since it is difficult to directly calculate joint
probability P(d, <Q, C>) due to the data sparseness problem, we
introduce three independence assumptions: independency among
query terms, independency among context elements, and
independency between query and context. While the former two
assumptions are reasonable and extensively used in pervious
probabilistic models, the third one could actually bring negative
effects to contextual retrieval. For example, a document term
occasionally has very high mutual information values with some
contextual elements could be selected as expansion term even
when it is not correlated to the current query, and vice versa.

3.3 Model 3: Query-Context Dependent
Model
To lower the negative effect of the query-context independency
assumption, we introduce a third model to accommodate query-
context dependency relationships. This model is defined as:

���
∈∈∈∈

><++∝

><=><

QqCc
ij

Qq
j

Cc
i

jiji

cqdIqdIcdI

CQdICQdM

,
,

3

),(),(),(

),,(),|(

α

()�
∈∈

><
QqCc

ij
ji

cqdI
,

,, is the mutual information between document

term and query-context pair. It is this factor that introduces query-
context dependency into the model. The formula means that a
document term tightly correlated to both query and context will
get an extra plus of its weight. Parameter � is used to adjust the
weight of this query-context dependency factor.

3.4 Model 4: Context Filtering Model
A common problem in Model 1, 2 and 3 is that the noisy context
problem is not addressed at all. Obviously, noisy context could
easily lead to irrelevant expansion terms. So our fourth model
utilizes mutual information between query and context to
eliminate noisy elements in the context.

}),(,|{

),(),(),(

),,(

),,(),|(

'

,
,

'

4

''

ε

α

≥∈=

><++∝
><∝

><=><

���
∈∈∈∈

QcICccC

where

cqdIqdIcdI

CQdI

CQdICQdM

QqCc
ij

Qq
j

Cc
i

jiji

I(c, Q) is the mutual information between query and a contextual
element. It is used to detect and remove contextual elements not
tightly correlated to the current query. � is the threshold for the
filtering process. The intuition here is that if a contextual element
is seldom observed to be related to a query in the past, this
contextual element is considered as an irrelevant contextual
information.

Our query expansion method is based on the probabilistic models
described above. When a new query with context is submitted, a
list of correlated document terms are selected and ranked based on
the conditional probability obtained by the models. Then the top-
ranked terms can be selected as expansion terms.

4. A CASE STUDY – TROUBLESHOOTING
PC PROBLEMS
In this section, we introduce one interesting case study of
applying the proposed models to troubleshoot PC problems.
Actually our research on contextual retrieval is mainly motivated
by this application.

4.1 Problem Description
The typical scenario of troubleshooting a PC problem is as the
follows. The customer reports his/her problem to the engineer in a
technique support center by sending a problem description and a
set of related machine states. According to the symptom
description and PC states, the engineer tries to find solution from
a knowledge base containing a large amount of troubleshooting
articles. When a solution is found, the engineer guides the
customer to solve his/her problem step by step. Clearly, the
retrieval accuracy is critical here for the engineer to help the

customer to solve problem promptly. Unfortunately, the problem
description sent by the customer is usually very vague and only
surficial symptom about the problem is provided. Since similar
symptom may be caused by many different root causes, a simple
text retrieval tool is limited for helping engineer to quickly
identifying the solution. In the real environment, for those unclear
problem descriptions, engineers will ask the users questions to
collect more information or manually analyze the state
information and then modify the problem descriptions. In fact,
contextual retrieval models could do this automatically.

A unique property of our problem setting is that a set of PC states
is sent together with customer’s problem description. These states
contain important information to understand the problem. We take
the problem description as the query and the registry states as the
accompanying context of the query. Thus we view the PC
troubleshooting as a typical contextual retrieval application.

Windows Registry is the main configuration state store on PCs,
and there are typically more than 200,000 registry states on a
machine and the total number of registry states is more that one
million [15]. The incorrect values of these registry states may
cause various problems. But it’s extremely difficult for human to
figure out the root cause from such a large number of states. Since
the size of the contextual data is very huge, it would cause serious
data sparseness problem and make the contextual retrieval task
very difficult, if not impossible. Fortunately, we can quickly
remove most of the contextual data based on the following two
observations:

First, based on the log data, we found that only about 5,000
registry states are ever reported to cause problems in the past.
Among these registry states, a few states are reported to cause
problems many times, but most states only have small numbers of
occurrences. We found the number of occurrences of the states
approximately follows a Zipf distribution [18]. Based on this
observation, we can simply remove the states not found to cause
any problem in the past.

Second, a tool called Strider is invented to dramatically filter out
irrelevant states [15]. The basic idea of Strider is that only states
changed recently and used by the current failed operation are
likely to be the root causes of a problem. The work flow of Strider
is as follows. When a user finds an operation (such as sending
email) has failed, and he remembers that he could do this
operation in the past and has a snapshot of the good state
information at that time (snapshots are automatically maintained
in Windows), he can compare that good state with the current bad
state to produce a diffing set. At the second step, he repeats the
failed operation and traces the registry states related to the
operation. The trace set and the diffing set are intersected to
produce a candidate set. Hopefully, the root cause is contained in
the candidate set. In our statistics, Strider can decrease the number
of candidate states from 200,000 to less than 40 for 90% queries.

Based on the above two observations, contextual data with
relatively small size for each query can be obtained. This could be
taken as a query-independent contextual noise filtering step.
Although the observations are come from the troubleshooting data,
we guess that the contextual data in other domains may have the
similar properties and methods for contextual noise filtering could
be explored in a similar spirit.

4.2 Data
The document set is made up of 142,448 troubleshooting articles
written manually by experienced engineers. Although these
articles are represented in a XML structure, in our experiments,
we treat each article as a free text document.

We collected 31,933 query sessions from past query logs. A
session contains the problem description, related registry states
and the solution articles recommend by engineer. Therefore, each
case is a complete query-context-document sequence.

Based on the document set and sessions, we calculate mutual
information I(d, q), I(d, c), I(q, c), I(d, <q, c>) respectively using
maximum likelihood estimates.

)()(
),(

ln),(
qfdf
Mqdf

qdI
×=

)()(
),(

ln),(
cfdf
Mcdf

cdI
×=

)()(
),(

ln),(
cfqf
Ncqf

cqI
×=

),()(
),,(

ln),,(
><

×><=><
cqfdf

Mcqdf
cqdI

where f(q), f(c), f(d, q), f(d, c), f(q, c), f(d, <q, c>) are the numbers
of query sessions in which the terms or contextual elements or
pairs appear. f(d) is the document frequency of term d. M is the
number of documents and N is the number of query sessions.

In traditional statistical learning settings, smoothing techniques
are used to solve the problem of data sparseness in the training
process. Since the number of query sessions (31,933) is relatively
small, the training data is still quite sparse given the large number
of parameters involved. In our case, we use simple ways for
smoothing. Since mutual information tends to give high value for
rare events, we remove terms or contextual elements with
occurrence frequencies smaller than 10. For any f(a, b)=0 in the
logs, we define I(a, b)=0.

We collected 29 queries of real-world failures reported by our
colleagues and users of Web support forums. These cases are not
picked up from the query logs and thus they are independent from
the data we used to train the models. For each case, the problem
symptom description and registry states are recorded and noisy
states are filtered using methods in Section 4.1. The 29 queries are
listed in Table 1.

5. EXPERIMENTAL RESULTS
This section provides empirical evidence about the effectiveness
of our contextual retrieval models. All experiments are conducted
on the PC troubleshooting data.

We use BM2500 in Okapi [14] as the ranking function for the
backend retrieval system. It is of the form

(1) 1 3

3

(1) (1)

()()T Q

k tf k qtf
w

K tf k qtf∈

+ +

+ +
�

where Q is a query containing terms T, tf is the frequency of
occurrence of the term within a specific document, qtf is the

frequency of the term within the topic from which Q was derived,
and w(1) is the Robertson/Spark Jones weight of T in Q. K is
calculated by

 1
((1 -) /)k b b dl avdl+ ×

where dl and avdl denote the document length and the average
document length measured in some suitable unit, such as word or
a sequence of words. In our experiments, we set k1 = 1.5, k3 = 5, b
= 0.5, and avdl = 200. To be fair, we fix the values of parameters
for all experiments.

Table 1. Queries used in the experiments

NO QUERY CONTEXT*
1 Cannot open Outlook attachment 29

2 Blank Windows activation page 27

3 IE always launch in offline mode 26

4 Spell checker does not work in Outlook Express 13

5 Title bar text changed after visiting some websites 78

6 Using Word as the Outlook email editor, cannot turn
off Word ‘Document Map’ option

26

7 Cannot open address book in Outlook 39

8 Unable to play file with media player 41

9 Cannot open .exe programs 24

10 Outlook cannot remember password 38

11 Windows Messenger stops running 26

12 'File not found' message potentially due to a virus or
misconfiguration in antivirus program

14

13 Not launch browser when click Internet in Start
menu

12

14 Office 2000 patch error 35

15 Error 1606 when installing and uninstalling 18

16 Excel cannot startup 17

17 Can not change IE home page settings 13

18 Office shortcut bar missed 13

19 MSN Explorer dial-up unable to sign in using
analog phone line

21

20 Duplex Printer becomes simplex printer 16

21 IE can only save image file as bmp file 32

22 Desktop Tab missing from Display Properties 24

23 CD ROM error 15

24 Windows Media player product feedback causes AV 14

25 Windows Update access denied 29

26 ‘Search’ prompts when double clicking a folder 24

27 Start System Restore, blank window appears 19

28 Cannot create a new dial up connection 26

29 Cannot connect to internet 51
*We only list the number of registry states and do not list the exact states
due to space limitation.

For comparison purpose, retrieval method using only query texts
is taken as the baseline. Then we use Model 1, 2, 3, 4 to choose
10 expansion terms to modify the original queries to conduct
retrieval. qtf of original query terms are set to 5 and qtf of
expansion terms are set to 1 uniformly. For Model 3 and 4, � is
set to 0.5. For Model 4, � is set to 1.0 to filter noisy context.

Table 2. Ranking results for 29 queries by different models

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15
Baseline 132 7 5 16 3 29 153 150 4697 51 5 30 11 32 4

Model 1 20 1 10 8 5 8 191 2 2039 4 8 2 12 5 1

Model 2 20 1 18 3 6 7 200 2 1308 3 5 2 22 5 1

Model 3 5 1 12 6 6 8 55 2 372 3 2 2 16 7 1

Model 4 1 1 6 1 3 6 1 4 1 3 6 2 3 2 1

Model Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29
Baseline 11 9 31 9 5 17 3 1024 7 4 22 7 951 1410

Model 1 13 1 4 5 7 21 3 15 8 12 1 3 7 8

Model 2 2 1 3 4 6 18 3 5 21 32 1 1 7 3

Model 3 3 1 1 4 3 13 3 4 12 36 1 1 5 4

Model 4 1 1 1 4 6 18 3 9 21 26 1 1 1 1

Table 3. Proportions of queries whose answers are ranked at
top 1, 5, 10, 20, 50 and 100

Model Top 1 Top 5 Top 10 Top 20 Top 50 Top 100

Baseline 0% 24% 41% 55% 72% 76%

Model 1 14% 45% 69% 90% 93% 93%

Model 2 17% 59% 72% 83% 93% 93%

Model 3 21% 62% 76% 90% 93% 97%

Model 4 45% 72% 90% 93% 100% 100%

In our experiments, Porter stemming and a stopword list
containing 426 words are used. We only use single word and do
not consider phrase information.

One particular characteristic of our experimental setting is that for
each of the 29 queries there is only one relevant document to
serve as the solution. We therefore manually choose the article
exactly contains the solution as the only relevant document for
each query. Then we calculate the proportions of queries for
which the correct answers are found at top 1, 5, 10, 20, 50 and
100 results to quantitively measure the performance of the models.
In practice, correct answer ranked beyond top 10 is nearly useless
since engineers have no time to go through too many documents
to find solutions.

The experimental results of the baseline and Model 1-4 are
illustrated in Table 2 and Table 3.

The baseline method performs badly. It can only rank the answers
of 41% queries at top 10 and there is no one query whose answer
could be ranked at top 1. It shows that it is hard to achieve good
performance without using contextual data in this application
since queries here are usually with an incomplete or vague
description. For example, Query 9 “Cannot open .exe programs”
is a very high-level description of the problem. There are a lot of
possible causes for this problem. In the current case, the real root
cause of the problem is that the PC is infected by the “SirCam
Virus”. So the answer document is one containing the solution of
getting ride of the virus. However, when only query text is used to
conduct the retrieval, such a important information is not captured
and the correct answer is ranked at No. 4697. There are also
several queries whose answers are ranked at top 5, namely Query

3, 5, 11, 15, 20, 22 and 25. Most of these queries describe
problems with one or few possible root causes and thus are with
little ambiguity. In these cases, contextual data is less important.

By simply using the contextual data, Model 1 achieves a
significant improvement on retrieval performance over the
baseline. The contextual data is useful to find good terms about
the root cause of the problems. However, since some expansion
terms produced from the contextual data could be irrelevant to the
current query, the ranking results of some queries become worse.

Model 2 uses query and context together to generate expansion
term and its ranking results are better than Model 1. Moreover,
when adding the query-context dependency factor into the model,
Model 3 improves the performance further.

Finally, the results of Model 4 show that contextual noise filtering
plays a very important role of improving retrieval performance.
This model could rank the answers of 45% queries at top 1 and
90% queries at top 10. Such a precision could greatly improve the
productivity of support engineers. The big performance
improvement may partially attribute to that there are a lot of noisy
information in context in this application. However, other
applications, especially those in which contextual data is
produced implicitly, may suffer from the same problem and
query-dependent contextual noise filtering could be a crucial
technique for them too.

6. RELATED WORK
There has been some work on using query logs to enhance Web
searching. [2] exploited “clickthrough data” in clustering URLs
and queries using graph-based iterative clustering technique. [16]
used a similar method to cluster queries according to user logs in
order to find Frequently Asked Questions (FAQs). These FAQs
are then used to improve the effectiveness of question answering.

There are also a lot of works on query expansion [5] [6] [12] [17].
The idea in [6] is closest to ours. The authors found that there is a
big gap between term usages of queries and documents. They built
a probabilistic model to describe the correlations between query
terms and documents terms and then used this model to choose
high-quality expansion terms. They reported a big performance
improvement in a real search engine. However, their model targets

to traditional retrieval problems and do not consider any
contextual information.

Many problems in machine translation, information retrieval, text
classification can be modeled as one based on the relation
between two spaces. The central issue of statistical machine
translation is to construct a probabilistic model between the
spaces of two languages [4]. In information retrieval, many
statistical methods [3] [8] [9] have been proposed for effectively
finding the relationship between terms in the space of user queries
and those in the space of documents. [11] proposed using texts
and the associated summaries to build a stochastic keyword
generation model to improve text classification.

[10] discussed some general issues and challenges in Web
contextual search. [7] proposed a contextual search method to
extract relevant terms from surrounding text when query is picked
up from a text body.

To our best knowledge, there is no previous work extensively
discusses the correlations among query, context and document in
the contextual retrieval setting. Also, the incompatible context,
noisy context, incomplete query problems are not addressed by
any existing retrieval models.

7. CONCLUSION
In this paper, we propose several probabilistic models for
contextual search. These models are designed mainly to solve the
important issues in contextual search, such as incompatible
context, noisy context, and incomplete query. We conduct a
thorough case study in the PC troubleshooting domain to testify
the performance of the models and experimental results show that
the models can achieve very good retrieval precision.

Although we only test our proposed models in the specific PC
troubleshooting domain, we believe that the basic ideas in the
paper could be adopted to deal with similar retrieval problems in
other domains. Actually, we are investigating how to apply the
models to mobile search, which exhibits the similar context
properties such as incompatible and noisy context.

In the paper, we focus on using a query expansion strategy to
build contextual retrieval models. In the future, we plan to use
language model and translation model methods to build other
models for contextual search, in a similar way to the models in [3]
[8] [9] [13].

8. REFERENCES
[1] Allan, J. et al, Challenges in Information Retrieval and

Language Modeling, Report of a Workshop held at the
Center for Intelligent Information Retrieval, University of
Massachusetts Amherst, September 2002

[2] Beeferman, D. and Berger, A., Agglomerative clustering of a
search engine query log, In Proceedings of ACM SIGKDD
2000, Boston, MA, USA, pp. 407-416, 2000

[3] Berger, A. and Lafferty, J., Information Retrieval as
Statistical Translation. In Proceedings of ACM SIGIR 1999,
pp. 222-229, 1999

[4] Brown, P., Della Pietra, S., Della Pietra, V. and Mercer, R.,
The mathematics of statistical machine translation: Parameter

estimation," Computational Linguistics, 19(2), pp. 263-311,
1993

[5] Buckley, C., Salton, G., Allan, J., and Singhal, A., Automatic
query expansion using SMART, TREC 3. Overview of the
Third Text REtrieval Conference (TREC-3), pp. 69-80. NIST,
November 1994.

[6] Cui, H., Wen, J.-R., Nie, J.-Y., and Ma, W.-Y., Query
Expansion by Mining User Logs, IEEE Transaction on
Knowledge and Data Engineering, Vol. 15, No. 4, pp. 829-
839, July/August 2003

[7] Finkelstein, L. et al, Placing Search in Context: The Concept
Revisited, In Proceedings of the Tenth International World
Wide Web Conference (WWW10), Hong Kong, May 2001

[8] Jin, R., Hauptmann, A. G. and Zhai C., Title Language
Model for Information Retrieval, In Proceedings of the ACM
SIGIR 2002, pp. 42–48, 2002

[9] Lafferty, J. and Zhai, C., Document Language Models, Query
Models, and Risk Minimization for Information Retrieval, In
Proceedings of the ACM SIGIR 2001, pp. 111–119, 2001

[10] Lawrence, S., Context in Web Search, IEEE Data
Engineering Bulletin, Volume 23, Number 3, pp. 25–32,
2000

[11] Li, C., Wen, J.-R. and Li, H., Text Classification Using
Stochastic Keyword Generation, Proceedings of the
Twentieth International Conference on Machine Learning
(ICML 2003), Washington, DC USA, August 2003

[12] Mitra, M., Singhal, A. and Buckley, C., Improving
Automatic Query Expansion. In Proceedings of the ACM
SIGIR 1998, pp. 206-214, Melbourne, August 1998

[13] Ponte, J. and Croft, W. B., A Language Modeling Approach
to Information Retrieval. In Proceedings of the ACM SIGIR
1998, pp. 275–281, 1998

[14] Robertson, S. E., Walker, S. and Sparck Jones, M. et, al.,
Okapi at TREC-3, In D. K. Harman, editor, In Proceedings
of the Second Text Retrieval Conference (TREC-3), NIST
Special Publication, 500-225, 1995

[15] Wang, Y.-M., Verbowski, Chad., Dunagan, J., Chen, Y.,
Wang, H.J., Yuan, C., and Zhang, Z., “STRIDER: A Black-
box, State-based Approach to Change and Configuration
Management and Support,” in Proc. Usenix Large
Installation Systems Administration (LISA) Conference, pp.
159-171, October 2003.

[16] Wen, J.-R., Nie, J.-Y. and Zhang, H.-J., Query Clustering
Using User Logs, ACM Transactions on Information
Systems (ACM TOIS), 20(1), pp. 59-81, 2002

[17] Xu, J. and Croft, W.B., Improving the Effectiveness of
Information Retrieval with Local Context Analysis. ACM
Transactions on Information Systems (ACM TOIS), 18(1),
pp. 79-112, 2000

[18] Zipf, G.K., Human Behavior and Principle of Least Effort:
an Introduction to Human Ecology, Addison Wesley,
Cambridge, MA, 1949

