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ABSTRACT 
Contextual retrieval is a critical technique for facilitating many 
important applications such as mobile search, personalized search, 
PC troubleshooting, etc. Despite of its importance, there is no 
comprehensive retrieval model to describe the contextual retrieval 
process. We observed that incompatible context, noisy context 
and incomplete query are several important issues commonly 
existing in contextual retrieval applications. However, these issues 
have not been previously explored and discussed. In this paper, 
we propose probabilistic models to address these problems. Our 
study clearly shows that query log is the key to build effective 
contextual retrieval models. We also conduct a case study in the 
PC troubleshooting domain to testify the performance of the 
proposed models and experimental results show that the models 
can achieve very good retrieval precision. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval 

General Terms 
Algorithms, Human Factors, Performance, Theory 

Keywords 
Contextual Retrieval, Probabilistic Model, Query Expansion, 
Query Log 

1. INTRODUCTION 
Contextual retrieval is one of the major long term challenges in 
information retrieval. In a recent workshop report [1], contextual 
retrieval is defined as “combine search technologies and 
knowledge about query and user context into a single framework 
in order to provide the most ‘appropriate’ answer for a user's 
information needs”. In our organization, we are currently 
exploring applying contextual retrieval methods on the following 
two applications: 

Mobile search – In the last decade, the dramatic increase in the 
use and availability of mobile devices such as cellular phones and 
personal digital assistants (PDAs) has made it more realistic to 

access information anytime and anywhere. Context-aware mobile 
search is a search paradigm in which applications can discover 
and take advantage of contextual information (such as user 
location, time of day, nearby people and devices, user activity, 
user profile, etc.). When a user submits a query “bus”, search 
service could suggest bus routes with proper location and time 
schedule. Better retrieval precision is demanded in mobile search 
due to the limited bandwidth and display screen of mobile devices. 

Context-aware PC troubleshooting – Traditionally, in 
technical support centers, when a customer send in a problem, 
information retrieval tools are used to find documents containing 
solution to the problem. Considering that most customers are not 
PC experts, their problem descriptions usually are inaccurate. 
Directly using customers’ problem descriptions to retrieval 
relevant documents often cannot get satisfactory results. We are 
investigating a more advanced retrieval technique for PC 
troubleshooting by taking advantage of “PC context”. Generally, 
when customer submits a problem to the support center, the 
current state information in his/her computer could be collected 
simultaneously. The state information contains very important 
cues about the root causes of the current problem. We could treat 
state information as the context of the problem description (or 
query) and view the PC troubleshooting as a typical contextual 
retrieval application. In section 4 and 5, we will show how 
contextual retrieval could greatly improve the retrieval 
performance of PC troubleshooting. 

Seemingly, the above two applications are quite different. But 
after working on them for some time, we found that they face very 
similar challenges in essence. More specifically, the following 
issues are common in them: 

� Incompatible context: in previous contextual search and 
personalized search works, query, context and document are 
made up of the same kind of component – word. Thus it is 
easy to accommodate the context data into the text retrieval 
framework. In many works, context is simply combined with 
query to construct an expanded query [7] [10]. However, for 
the two applications we show above, the component of 
context is totally different from that of query and document. 
For example, in the PC troubleshooting application, context 
contains low-level state information of computers. It is 
impossible to directly measure the similarity between 
context and document. Thus, simply incorporating context 
into query does not work. 

� Noisy context: most previous works treat context as noise-
free information. This may be true for some kinds of explicit 
contexts such as user profiles. But for applications where 
implicit contexts are collected automatically (just as in our 
cases), a large portion of contextual data may be irrelevant 
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to the current query. Noisy contextual information may 
negatively affect the retrieval performance. Another 
viewpoint to this problem is related to how to distinguish 
context-sensitive query and context-free query. If noisy 
context information could be accurately filtered, context-
sensitive query could benefit from correct context and 
context-free query will not be biased by irrelevant context. 

� Incomplete query: in contextual retrieval applications, users 
usually do not provide complete descriptions about their 
information needs. In the mobile search application, it is 
inconvenient for users to accurately describe their query 
purposes in a small device on the go. For PC 
troubleshooting, common users only know the symptoms of 
problems. They are not PC experts and thus can only 
provide inaccurate description of the problems. Therefore, 
in our view, the aim of contextual retrieval is not only to 
constrain queries but also to expand the queries to more 
complete and precise descriptions of the information needs. 

These issues extensively exist in many contextual retrieval 
scenarios. However, despite that there are a lot of works about 
personalized search and contextual search, to our best knowledge, 
there is no a uniform framework to clearly address the issues. 
However, we think such a kind of models is very crucial to 
explore core problems of contextual retrieval in a systematic way. 

In this paper, we describe how to use past query sessions in query 
logs to build probabilistic models to tackle with these issues. 
Query logs record past query sessions across a time span, and we 
could obtain a contextual search history about what documents 
are taken as good answers to what queries in certain contexts. 
Through the logs, probabilistic correlations among query terms, 
context elements and document terms could be built. Correlations 
between context and document could be used to solve the 
incompatible context problem, correlations between query and 
context could be used to filter out noisy contextual information, 
and correlations among query, context and document could be 
utilized to generate more accurate and complete query and thus 
solve the incomplete query problem. 

Based on the correlations, we propose four probabilistic models to 
generate expansion terms for contextual retrieval. We also 
conduct a case study to use the models to troubleshooting PC 
problems. Our experimental results show that the proposed 
models can effectively achieve good retrieval performance. This 
case study actually motivates the main ideas in the paper and we 
hope that the experiences learnt from it could be extended to other 
applications. 

The rest of the paper is organized as follows. Section 2 gives a 
general description of our methodology and discuss the 
correlations among query, context and document. Section 3 
describes four probabilistic models for generating expansion 
terms for contextual retrieval. Section 4 introduces our case study 
of using the models in the PC troubleshooting application. We 
report our experimental results in Section 5. We discuss related 
work in Section 6 and conclude the paper and discuss future work 
in Section 7. 

2. METHODOLOGY 
A good model for contextual retrieval should correctly interpret 
user’s information need, which is partially represented by both the 

query and corresponding context respectively. Also, the 
information need should be translated to the “language of 
document” to facilitate effective document retrieval. However, as 
we already pointed out, the three inherent issues in contextual 
retrieval applications make it difficult to find such a good model. 
First, the incomplete query and noisy context issues obstruct the 
accurate capture and interpretation of user’s information need. 
Second, the incompatible context issue not only affects the 
understanding of information need but make it hard to construct 
the connection between context and document. 

Obviously it is impossible to build a good model solely based on 
the document set. In this study, we investigate how to utilize 
query logs to meet the challenges. 

Query log records past query sessions. A query session in 
contextual retrieval typically records a query-context-document 
sequence. 

Query session := <query, context> [clicked document]* 

Each session contains one query, its corresponding context and a 
set of documents which the user clicked on or labeled (which we 
will call clicked documents). The central idea of our method is 
that if a set of documents is often selected for the similar queries 
in similar contexts, the terms in these documents are strongly 
related to the terms of the queries and elements in the contexts. 
Also, if similar queries and similar contexts frequently co-occur in 
the logs, the terms in the queries are tightly correlated to elements 
in the contexts. Thus probabilistic correlations among query terms, 
contextual elements and document terms can be established based 
on the query logs, as illustrated in Figure 1.  

 

 

Figure 1. Query sessions build the correlations among query 
terms, contextual elements and document terms 

Mutual information is a measure of the statistical dependency 
between two random variables based on Shannon's entropy and it 
is defined as the following: 
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Taking query logs as a bridge, we could use mutual information to 
determine the degrees of correlations among query terms, 
contextual elements and document terms (Figure 2). 

 

 

Figure 2. Mutual information among query terms, contextual 
elements and document terms 

One important assumption behind this strategy is that query, 
context and document are tightly correlated in a query session. 
This assumption apparently doesn’t hold for all query sessions. 
User may submit a query irrelevant to his/her context, user may 
search for something different from his/her habits, and user may 
also wrongly click a document or shift his/her intention when 
browsing the retrieval results. However, in the long run with a 
large amount of log data, the query sessions allow us to find 
significant correlations from a statistical point of view. Similar 
observations have been made in [6] [16]. 

[6] also pointed out that there is a big gap between term usages of 
queries and documents and a probabilistic model built through log 
mining could effectively bridge the gap. In this study, we further 
extend the previous utilizations of query logs to tackle the 
contextual retrieval problems. After building the correlations 
among query terms, contextual elements and document terms, 
models could be constructed to estimate “good” document terms 
based on a query and context. By using these document terms to 
expand the original queries, it is expected to retrieval good 
documents matching the information need represented by both 
query and context. With this strategy, we could easily address the 
mentioned three issues of contextual retrieval. With the 
correlations between contextual elements and document terms, 
incompatible context could be translated to proper document 
terms and thus retrieve documents related to the context. 
Correlations between query terms and contextual elements could 
be applied to filter contextual elements not related to the query. 
For the incomplete query issue, correlations among query terms, 
contextual elements and document terms could be used together to 
generate good expansion terms to make the query more complete 
and effective for retrieval. 

3. MODELS FOR CONTEXTUAL 
RETRIEVAL 
In this section, based on mutual information among query, context 
and document, we propose several probabilistic models to 
generate expansion terms for facilitating contextual retrieval. 

3.1 Model 1: Context Only Model 
The first model is a simple and intuitive one: document terms 
tightly correlated to context are chosen as expansion terms to 
modify the original query. 
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where I(d, C) is the mutual information between context and 
document term. In terms of the manner of combining query and 
context, this model is similar to traditional solution to contextual 
retrieval. However, in our case, expansion terms do not directly 
come from the context but from documents correlated to the 
context. In this way, the incompatible context problem could be 
overcome. 

3.2 Model 2: Query-Context Independent 
Model 
The main shortcoming of Model 1 is that expansion terms are 
purely generated from context and thus are not correlated to query. 
As a context element may appear in a lot of query sessions 
containing diverse queries, irrelevant terms related to the context 
but not to the current query could be inappropriately chosen as 
expansion terms. Our second model uses query and context 
together to control the expansion process. 
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where I(d, Q) is the mutual information between query and 
document term. 

The advantage of Model 2 over Model 1 is that it will assign 
higher weights to document terms tightly correlated to both the 
query and context. 

In this formula, since it is difficult to directly calculate joint 
probability P(d, <Q, C>) due to the data sparseness problem, we 
introduce three independence assumptions: independency among 
query terms, independency among context elements, and 
independency between query and context. While the former two 
assumptions are reasonable and extensively used in pervious 
probabilistic models, the third one could actually bring negative 
effects to contextual retrieval. For example, a document term 
occasionally has very high mutual information values with some 
contextual elements could be selected as expansion term even 
when it is not correlated to the current query, and vice versa. 

3.3 Model 3: Query-Context Dependent 
Model 
To lower the negative effect of the query-context independency 
assumption, we introduce a third model to accommodate query-
context dependency relationships. This model is defined as: 
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term and query-context pair. It is this factor that introduces query-
context dependency into the model. The formula means that a 
document term tightly correlated to both query and context will 
get an extra plus of its weight. Parameter � is used to adjust the 
weight of this query-context dependency factor. 

3.4 Model 4: Context Filtering Model 
A common problem in Model 1, 2 and 3 is that the noisy context 
problem is not addressed at all. Obviously, noisy context could 
easily lead to irrelevant expansion terms. So our fourth model 
utilizes mutual information between query and context to 
eliminate noisy elements in the context.  
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I(c, Q) is the mutual information between query and a contextual 
element. It is used to detect and remove contextual elements not 
tightly correlated to the current query. � is the threshold for the 
filtering process. The intuition here is that if a contextual element 
is seldom observed to be related to a query in the past, this 
contextual element is considered as an irrelevant contextual 
information. 

 

Our query expansion method is based on the probabilistic models 
described above. When a new query with context is submitted, a 
list of correlated document terms are selected and ranked based on 
the conditional probability obtained by the models. Then the top-
ranked terms can be selected as expansion terms. 

4. A CASE STUDY – TROUBLESHOOTING 
PC PROBLEMS 
In this section, we introduce one interesting case study of 
applying the proposed models to troubleshoot PC problems. 
Actually our research on contextual retrieval is mainly motivated 
by this application. 

4.1 Problem Description 
The typical scenario of troubleshooting a PC problem is as the 
follows. The customer reports his/her problem to the engineer in a 
technique support center by sending a problem description and a 
set of related machine states. According to the symptom 
description and PC states, the engineer tries to find solution from 
a knowledge base containing a large amount of troubleshooting 
articles. When a solution is found, the engineer guides the 
customer to solve his/her problem step by step. Clearly, the 
retrieval accuracy is critical here for the engineer to help the 

customer to solve problem promptly. Unfortunately, the problem 
description sent by the customer is usually very vague and only 
surficial symptom about the problem is provided. Since similar 
symptom may be caused by many different root causes, a simple 
text retrieval tool is limited for helping engineer to quickly 
identifying the solution. In the real environment, for those unclear 
problem descriptions, engineers will ask the users questions to 
collect more information or manually analyze the state 
information and then modify the problem descriptions. In fact, 
contextual retrieval models could do this automatically. 

A unique property of our problem setting is that a set of PC states 
is sent together with customer’s problem description. These states 
contain important information to understand the problem. We take 
the problem description as the query and the registry states as the 
accompanying context of the query. Thus we view the PC 
troubleshooting as a typical contextual retrieval application. 

Windows Registry is the main configuration state store on PCs, 
and there are typically more than 200,000 registry states on a 
machine and the total number of registry states is more that one 
million [15]. The incorrect values of these registry states may 
cause various problems. But it’s extremely difficult for human to 
figure out the root cause from such a large number of states. Since 
the size of the contextual data is very huge, it would cause serious 
data sparseness problem and make the contextual retrieval task 
very difficult, if not impossible. Fortunately, we can quickly 
remove most of the contextual data based on the following two 
observations: 

First, based on the log data, we found that only about 5,000 
registry states are ever reported to cause problems in the past. 
Among these registry states, a few states are reported to cause 
problems many times, but most states only have small numbers of 
occurrences. We found the number of occurrences of the states 
approximately follows a Zipf distribution [18]. Based on this 
observation, we can simply remove the states not found to cause 
any problem in the past. 

Second, a tool called Strider is invented to dramatically filter out 
irrelevant states [15]. The basic idea of Strider is that only states 
changed recently and used by the current failed operation are 
likely to be the root causes of a problem. The work flow of Strider 
is as follows. When a user finds an operation (such as sending 
email) has failed, and he remembers that he could do this 
operation in the past and has a snapshot of the good state 
information at that time (snapshots are automatically maintained 
in Windows), he can compare that good state with the current bad 
state to produce a diffing set. At the second step, he repeats the 
failed operation and traces the registry states related to the 
operation. The trace set and the diffing set are intersected to 
produce a candidate set. Hopefully, the root cause is contained in 
the candidate set. In our statistics, Strider can decrease the number 
of candidate states from 200,000 to less than 40 for 90% queries. 

Based on the above two observations, contextual data with 
relatively small size for each query can be obtained. This could be 
taken as a query-independent contextual noise filtering step. 
Although the observations are come from the troubleshooting data, 
we guess that the contextual data in other domains may have the 
similar properties and methods for contextual noise filtering could 
be explored in a similar spirit. 



4.2 Data 
The document set is made up of 142,448 troubleshooting articles 
written manually by experienced engineers. Although these 
articles are represented in a XML structure, in our experiments, 
we treat each article as a free text document. 

We collected 31,933 query sessions from past query logs. A 
session contains the problem description, related registry states 
and the solution articles recommend by engineer. Therefore, each 
case is a complete query-context-document sequence.  

Based on the document set and sessions, we calculate mutual 
information I(d, q), I(d, c), I(q, c), I(d, <q, c>) respectively using 
maximum likelihood estimates. 
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where f(q), f(c), f(d, q), f(d, c), f(q, c), f(d, <q, c>) are the numbers 
of query sessions in which the terms or contextual elements or 
pairs appear. f(d) is the document frequency of term d. M is the 
number of documents and N is the number of query sessions. 

In traditional statistical learning settings, smoothing techniques 
are used to solve the problem of data sparseness in the training 
process. Since the number of query sessions (31,933) is relatively 
small, the training data is still quite sparse given the large number 
of parameters involved. In our case, we use simple ways for 
smoothing. Since mutual information tends to give high value for 
rare events, we remove terms or contextual elements with 
occurrence frequencies smaller than 10. For any f(a, b)=0 in the 
logs, we define I(a, b)=0. 

We collected 29 queries of real-world failures reported by our 
colleagues and users of Web support forums. These cases are not 
picked up from the query logs and thus they are independent from 
the data we used to train the models. For each case, the problem 
symptom description and registry states are recorded and noisy 
states are filtered using methods in Section 4.1. The 29 queries are 
listed in Table 1. 

5. EXPERIMENTAL RESULTS 
This section provides empirical evidence about the effectiveness 
of our contextual retrieval models. All experiments are conducted 
on the PC troubleshooting data. 

We use BM2500 in Okapi [14] as the ranking function for the 
backend retrieval system. It is of the form 
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where Q is a query containing terms T, tf is the frequency of 
occurrence of the term within a specific document, qtf is the 

frequency of the term within the topic from which Q was derived, 
and w(1) is the Robertson/Spark Jones weight of T in Q. K is 
calculated by 

 1
((1 - ) / )k b b dl avdl+ ×

 

where dl and avdl denote the document length and the average 
document length measured in some suitable unit, such as word or 
a sequence of words. In our experiments, we set k1 = 1.5, k3 = 5, b 
= 0.5, and avdl = 200. To be fair, we fix the values of parameters 
for all experiments. 

Table 1. Queries used in the experiments 

NO QUERY CONTEXT* 
1 Cannot open Outlook attachment 29 

2 Blank Windows activation page 27 

3 IE always launch in offline mode 26 

4 Spell checker does not work in Outlook Express 13 

5 Title bar text changed after visiting some websites 78 

6 Using Word as the Outlook email editor, cannot turn 
off Word ‘Document Map’ option 

26 

7 Cannot open address book in Outlook 39 

8 Unable to play file with media player 41 

9 Cannot open .exe programs 24 

10 Outlook cannot remember password 38 

11 Windows Messenger stops running 26 

12 'File not found' message potentially due to a virus or 
misconfiguration in antivirus program 

14 

13 Not launch browser when click Internet in Start 
menu 

12 

14 Office 2000 patch error 35 

15 Error 1606 when installing and uninstalling 18 

16 Excel cannot startup 17 

17 Can not change IE home page settings 13 

18 Office shortcut bar missed 13 

19 MSN Explorer dial-up unable to sign in using 
analog phone line 

21 

20 Duplex Printer becomes simplex printer 16 

21 IE can only save image file as bmp file 32 

22 Desktop Tab missing from Display Properties 24 

23 CD ROM error 15 

24 Windows Media player product feedback causes AV 14 

25 Windows Update access denied 29 

26 ‘Search’ prompts when double clicking a folder 24 

27 Start System Restore, blank window appears 19 

28 Cannot create a new dial up connection 26 

29 Cannot connect to internet 51 
*We only list the number of registry states and do not list the exact states 
due to space limitation. 
 

For comparison purpose, retrieval method using only query texts 
is taken as the baseline. Then we use Model 1, 2, 3, 4 to choose 
10 expansion terms to modify the original queries to conduct 
retrieval. qtf of original query terms are set to 5 and qtf of 
expansion terms are set to 1 uniformly. For Model 3 and 4, � is 
set to 0.5. For Model 4, � is set to 1.0 to filter noisy context. 



Table 2. Ranking results for 29 queries by different models 

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 
Baseline 132 7 5 16 3 29 153 150 4697 51 5 30 11 32 4 

Model 1 20 1 10 8 5 8 191 2 2039 4 8 2 12 5 1 

Model 2 20 1 18 3 6 7 200 2 1308 3 5 2 22 5 1 

Model 3 5 1 12 6 6 8 55 2 372 3 2 2 16 7 1 

Model 4 1 1 6 1 3 6 1 4 1 3 6 2 3 2 1 

 

Model Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 
Baseline 11 9 31 9 5 17 3 1024 7 4 22 7 951 1410 

Model 1 13 1 4 5 7 21 3 15 8 12 1 3 7 8 

Model 2 2 1 3 4 6 18 3 5 21 32 1 1 7 3 

Model 3 3 1 1 4 3 13 3 4 12 36 1 1 5 4 

Model 4 1 1 1 4 6 18 3 9 21 26 1 1 1 1 

 

Table 3. Proportions of queries whose answers are ranked at 
top 1, 5, 10, 20, 50 and 100 

Model Top 1 Top 5 Top 10 Top 20 Top 50 Top 100 

Baseline 0% 24% 41% 55% 72% 76% 

Model 1 14% 45% 69% 90% 93% 93% 

Model 2 17% 59% 72% 83% 93% 93% 

Model 3 21% 62% 76% 90% 93% 97% 

Model 4 45% 72% 90% 93% 100% 100% 

 

In our experiments, Porter stemming and a stopword list 
containing 426 words are used. We only use single word and do 
not consider phrase information. 

One particular characteristic of our experimental setting is that for 
each of the 29 queries there is only one relevant document to 
serve as the solution. We therefore manually choose the article 
exactly contains the solution as the only relevant document for 
each query. Then we calculate the proportions of queries for 
which the correct answers are found at top 1, 5, 10, 20, 50 and 
100 results to quantitively measure the performance of the models. 
In practice, correct answer ranked beyond top 10 is nearly useless 
since engineers have no time to go through too many documents 
to find solutions. 

The experimental results of the baseline and Model 1-4 are 
illustrated in Table 2 and Table 3. 

The baseline method performs badly. It can only rank the answers 
of 41% queries at top 10 and there is no one query whose answer 
could be ranked at top 1. It shows that it is hard to achieve good 
performance without using contextual data in this application 
since queries here are usually with an incomplete or vague 
description. For example, Query 9 “Cannot open .exe programs” 
is a very high-level description of the problem. There are a lot of 
possible causes for this problem. In the current case, the real root 
cause of the problem is that the PC is infected by the “SirCam 
Virus”. So the answer document is one containing the solution of 
getting ride of the virus. However, when only query text is used to 
conduct the retrieval, such a important information is not captured 
and the correct answer is ranked at No. 4697. There are also 
several queries whose answers are ranked at top 5, namely Query 

3, 5, 11, 15, 20, 22 and 25. Most of these queries describe 
problems with one or few possible root causes and thus are with 
little ambiguity. In these cases, contextual data is less important. 

By simply using the contextual data, Model 1 achieves a 
significant improvement on retrieval performance over the 
baseline. The contextual data is useful to find good terms about 
the root cause of the problems. However, since some expansion 
terms produced from the contextual data could be irrelevant to the 
current query, the ranking results of some queries become worse. 

Model 2 uses query and context together to generate expansion 
term and its ranking results are better than Model 1. Moreover, 
when adding the query-context dependency factor into the model, 
Model 3 improves the performance further. 

Finally, the results of Model 4 show that contextual noise filtering 
plays a very important role of improving retrieval performance. 
This model could rank the answers of 45% queries at top 1 and 
90% queries at top 10. Such a precision could greatly improve the 
productivity of support engineers. The big performance 
improvement may partially attribute to that there are a lot of noisy 
information in context in this application. However, other 
applications, especially those in which contextual data is 
produced implicitly, may suffer from the same problem and 
query-dependent contextual noise filtering could be a crucial 
technique for them too. 

6. RELATED WORK 
There has been some work on using query logs to enhance Web 
searching. [2] exploited “clickthrough data” in clustering URLs 
and queries using graph-based iterative clustering technique. [16] 
used a similar method to cluster queries according to user logs in 
order to find Frequently Asked Questions (FAQs). These FAQs 
are then used to improve the effectiveness of question answering. 

There are also a lot of works on query expansion [5] [6] [12] [17]. 
The idea in [6] is closest to ours. The authors found that there is a 
big gap between term usages of queries and documents. They built 
a probabilistic model to describe the correlations between query 
terms and documents terms and then used this model to choose 
high-quality expansion terms. They reported a big performance 
improvement in a real search engine. However, their model targets 



to traditional retrieval problems and do not consider any 
contextual information. 

Many problems in machine translation, information retrieval, text 
classification can be modeled as one based on the relation 
between two spaces. The central issue of statistical machine 
translation is to construct a probabilistic model between the 
spaces of two languages [4]. In information retrieval, many 
statistical methods [3] [8] [9] have been proposed for effectively 
finding the relationship between terms in the space of user queries 
and those in the space of documents. [11] proposed using texts 
and the associated summaries to build a stochastic keyword 
generation model to improve text classification. 

[10] discussed some general issues and challenges in Web 
contextual search. [7] proposed a contextual search method to 
extract relevant terms from surrounding text when query is picked 
up from a text body. 

To our best knowledge, there is no previous work extensively 
discusses the correlations among query, context and document in 
the contextual retrieval setting. Also, the incompatible context, 
noisy context, incomplete query problems are not addressed by 
any existing retrieval models. 

7. CONCLUSION 
In this paper, we propose several probabilistic models for 
contextual search. These models are designed mainly to solve the 
important issues in contextual search, such as incompatible 
context, noisy context, and incomplete query. We conduct a 
thorough case study in the PC troubleshooting domain to testify 
the performance of the models and experimental results show that 
the models can achieve very good retrieval precision. 

Although we only test our proposed models in the specific PC 
troubleshooting domain, we believe that the basic ideas in the 
paper could be adopted to deal with similar retrieval problems in 
other domains. Actually, we are investigating how to apply the 
models to mobile search, which exhibits the similar context 
properties such as incompatible and noisy context. 

In the paper, we focus on using a query expansion strategy to 
build contextual retrieval models. In the future, we plan to use 
language model and translation model methods to build other 
models for contextual search, in a similar way to the models in [3] 
[8] [9] [13]. 
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