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Abstract. TsinghuAeolus is the champion team for the latest two
RoboCup simulation league competitions. While our binary and nearly
full source code for RoboCup 2001 had been publicly available for the
entire year, we won the champion again in Fukuka, with more obvi-
ous advantage. This paper describes the key innovations that bring this
improvement. They include an advice-taking mechanism which aims to
improve agents’ adaptability, a compact and effective option scoring pol-
icy which is crucial in the option-evaluation framework, and thorough
analysis of interception problem which leads to more intelligent inter-
ception skill. Although not strongly interrelated, these innovations come
together to form a set of solutions for problems across different levels.

1 Introduction

RoboCup Simulation League provides a challenging platform to promote re-
search. By six consecutive years’ effort of the whole community, the simulation
match has improved amazingly, from being seemingly stupid to so delicate that
some people think it’s more than real. It should in great part owe to the whole
community’s great effort on sharing binaries and source codes. As the champion
team in Seattle, TsinghuAeolus2001 released both executable and source code.
Its effectiveness is convincingly proved by the fact that the newcomer Everest,
who started completely from the released TsinghuAeolus2001 source code, won
the runner-up in RoboCup 2002.

There was a debate in Fukuka on how to schedule simulation platform’s
development, alternatively speaking, how to develop the platform to help all
the participators do research on it. Since the attraction of RoboCup depends
partially on competition, one of the principles should be to encourage winning
from better research. On the other hand, RoboCup is so complex an environment
that various problems have to be solved to build a competitive team. We feel it’s
important to summarize what we have reached so that the following researchers
can build a strong team easily, on the basis of which they can focus on what
they are interested in. For this purpose, in addition to releasing source code, we
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try to describe our various key innovations in this paper, especially those that
make TsinghuAeolus2002 improve from TsinghuAeolus2001.

Taking external advice is an important way toward adaptability. Our first
innovation is an advice-taking mechanism, which can be attached to an existing
autonomous agent. It works somewhat like case-based architecture. The detail is
discussed in Section 2. In RoboCup, the architecture for action selection in ball
possession is the key component for a team. But few teams have explained their
work on this aspect in detail. Our second innovation focus on the creation and
evaluation of pass options. It is discussed in Section 3. The third innovation is
further analysis on interception, on the basis of which we develop an adversarial
interception skill. More detail is discussed in Section 4.

2 A Scheme Mechanism for Adaptability

Adaptability has been a desirable quality for autonomous agent all along. But in
some complex environments, it’s not easy for an autonomous agent to improve
by itself. RoboCup simulation platform, which is a highly dynamic, adversarial
multiagent environment, is such a typical case. The state space of 22 agents in
a continuous soccer field seems immense, and it’s hard to decide how an action,
in a sequence of hundreds of joint actions, is responsible for final success or fail.
Besides that, player’s local and noisy eyeshot is also a big disadvantage. Recently
there is an increasing focus on external advice which is expected to take a quite
important role for agent’s adaptability in many real applications. In RoboCup
simulation, an online coach acts as an advice-giving agent. In human matches,
teammates also help each other a lot by advising. Besides these, It will also be
quite interesting and meaningful if a domain expert can direct an autonomous
agent online by giving advice.

Given external advice, an autonomous agent needs to incorporate them into
its existing reasoning process. [9] converts the advice to internal neural hidden
units, which are then integrated into the existing knowledge-based neural net-
work. In this way, advice is incorporated seamlessly and can be redressed by later
learning. But it depends on a knowledge-based neural network which is not ap-
plicable in many domains including RoboCup. [3] converts coach advice to some
behavior which competes with other spontaneous behaviors in the same frame-
work of behavior manager. One of its advantages is that advice won’t be followed
blindly. We develop a compact and efficient mechanism to incorporate advice.
It is successfully applied in TsinghuAeolus2002. There are two main roles here:
scheme and scheme manager. Programmly each piece of advice is converted into
an object called “scheme”, which is then inserted into a corresponding scheme
manager. When the agent does related reasoning, the scheme manager will be
called to run in predefined point. Through the whole process, there are three
aspects most concerned:

– State of Advice
Advice is often given as condition-dependent. We define four states for each
scheme: sleeping, waiting, working and obsolete. Three conditions are re-
quired to update a scheme’s state: Cstart, Cend and Cactivate. Before Cstart
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is satisfied, the scheme is sleeping. When Cend is satisfied, it is obsolete.
Between them, if Cactivate is satisfied, it’s working, otherwise waiting. Only
working schemes are really incorporated into the agent’s decision-making.

– Where to Consider Advice
This is not always a problem. But if you have already an autonomous agent
and hope to incorporate advice into its existing decision process, which was
not designed to be advice-compatible, you have to consider it. This problem
seems domain-dependent and its solution is quite heuristic. A basic idea we
use is to classify schemes. Then we heuristically select a point, somewhere in
the agent’s decision process, for each class instead of each piece of advice. For
each class of advice, there is a corresponding scheme manager responsible
to update its schemes’ states and run all the working ones in some order.
Alternatively speaking, the scheme managers also determine what kinds of
advice may be incorporated. Those pieces of advice that can’t be classified
into any existing scheme manager have to be abandoned.

– Conflicting Issues
How to handle conflicting issues is concerned by many research work [10] [3].
We mainly handle two kinds of conflicting cases: exclusive and competitive.
For exclusive case, according to some heuristic criteria, an value of rank is
given to each scheme, which determines the scheme’s order of being pro-
cessed in its manager. The scheme with the highest rank can be considered
first and then the other kindred schemes are ignored. For example, it’s rea-
sonable to think that an advice from coach is more authoritative then one
from some teammate, so we give the coach advice a higher rank which guar-
antee it can exclude other teammates’ kindred advices. For competitive case,
we give an value of advice strength Sa which means the extent that the ad-
viser recommend this advice. A typical competitive case is option-evaluation
architecture(See Section 3). When an option is advised, its priority is added
by an extra value which is proportional with Sa. We’d like to address that the
priority is first calculated according to evaluation, which means the detail
of this advice is verified by the agent itself. This is a fundamental difference
between exclusive case and competitive case. The extra value can also be
negative which means this option is discouraged. Generally, we use a piece
of advice to encourage a group of options. For example, “pass more to region
R”, all the pass options whose destinations lie in R are encouraged to same
extent.

A simple scheme is a five touple {Cstart, Cend, Cactivate, Rank, Content}. The
first four have been explained above. The last one is an extendable component,
the instances of which often differ across classes of schemes. For example, Sa

is extended in Content for classes in competitive cases. The explanation and
execution of Content depends on the corresponding scheme manager.

We haven’t used online coach to give any advice because we haven’t worked
on online learning by coach yet. Although some of other teams’ online coaches
are available, it’s not reasonable to assume their advices more advisable than an
agent’s own autonomous behaviors. To experiment the capability of this mecha-
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nism, we give a variety of heuristic advices by ourselves. Some of them are listed
here, described in natural language.

– When Playmode is changed, scan the field with wide visual mode in less
than 7 cycles

– When Player Pa gets the ball in Region RA, run to Region RB and keep
some distance from Pa

– Don’t pass across our own forbidden area.

It proves to be quite natural and smooth to incorporate them into the existing
TsinghuAeolus agent under the scheme mechanism. If using online coach to give
advice, we would need to code conditions and actions in some language, for
example CLang [15]. And after the interpretation, the left things are just what
have been discussed above. In the TsinghuAeolus2002 champion agent, there
are totally 5 scheme managers and about 20 pieces of advice that may be given
according to the situation. We make a comparison between enabling advice and
disabling it. The result is shown in Table 1. It proves to work very well. The
improvement should owe to both good advice and the suitable mechanism to
incorporate it.

Table 1. Goals in 18000 cycles(30 minutes). To suppress the randomness of heteroge-
nous players across different matches, the parameters for all player types are forced to
be same with that of normal type, so all the agents for both sides are homogenous. The
another side is TsinghuAeolus2002 in all the cases, with scheme enabled or disabled

Opponent Team Scheme Enabled Scheme Disabled

FCP2002 0 - 24 0 - 16
USTC2002 2 - 18 3 - 13

TsinghuAeolus2002 2 - 2 4 - 0

3 Action Selection for Ball Possession

For controlling the player with the ball, the option-evaluation architecture [2] fits
well. It involves two layers. The lower layer is in charge of producing options, such
as dribbling, passing and shooting and so on. The upper one is to evaluate these
options according to various score policies. Then the option with the highest
score is to be executed. Although not called exactly as option-evaluation, the
corresponding modules in [8], [7] and [12] seem to be quite similar. They differ
only on the creation of options and score policies, which determine a team’s
competence in great part.

As introduced in [2], passing options are created at discreet angle increments
and speed increments. For each angle-speed pair, it’s rejected if some adversary
could intercept the ball before any teammate. Our way to generate pass options
was described briefly in [12]. The full implementation source code is available
in [14]. We also considering passing the ball at discrete angle increments, but
not at speed increments. For each angle, the speed section dominated by each
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agent (Any speed in which, paired with the angle, forms such a pass option that
the agent can receive the ball in advance of the others.) can be calculated in a
simplified model that involves only the positions of all the agents, instead of other
things such as their bodyfacing and heterogenous ability. A key technique in this
algorithm is reviewed in Section 4. Viewed in the polar coordinate of passing
angle and speed, the whole domain is separately dominated by the agents. Here
each agent’s domain is exactly the set of pass options that will be received by it
superior to the others. It’s approximated in both dimensions, angle and speed,
by discretization in [2]. Our method only needs to discretize the angle dimension,
but the cost is that it’s specific to the simplified model.

Option’s score is best understood as expected reward in the sense of Re-
inforcement learning[2]. A set of options defined over an MDP constitutes an
embed SMDP[11]. [11] gives theoretical insight into the related learning issues.
But it’s hard to be implemented in RoboCup right now. As we feel, the biggest
difficulty is how to automatically give the reward for an executed option ac-
curately. In the whole process from kick-off to goal, there are lots of options
executed by different agents. It’s hard, even for human, to decide whether it is
good or not for each of them. Until now, we haven’t known the score policy of
any top team is fully dependent on learning. There is much research work that
can be done on this subject in the future.

[2] calculates the score of an option by ps ∗ vs + (1 − ps) ∗ vf where ps is
the possibility of success and vs and vf are the values of succeeding and fail-
ing respectively. TsinghuAeolus2001 also used this natural form and even took
a nearly same way to calculate ps and vs. Our improvement for TsinghuAeo-
lus2002 comes from further analysis and approximation of these factors. For ps,
there are at least two factors responsible to the failure of a pass course, the noise
of kicking action and the unaccurate knowledge of other agents, such as their
positions, body facing and responsiveness and so on. The danger of the first one
is approximated by the margin of the option relative to the agent’s domain in the
polar system of passing angle and speed. Obviously, bigger is this margin, more
robust it is as kicking concerned. The other one can be approximated by the
margin between its and other agents’ interception times. For vs, we also divide
it into two factors, direct reward vdr and future reward vfr. vdr is calculated
according to a static potential field which is built and stored in a neural network
beforehand. It’s a function of location that increases as the ball advances to-
wards the opponent’s goal. vfr is approximated by evaluating the suppositional
situation when the receiver gets the ball. If there’s an open space around it or a
good shooting opportunity, we say there is high future reward expected. It’s not
hard to heuristically combine them to get the final score. In fact, since scores
are used only in competition between the options in the same cycle, we don’t
need to keep them consistent through cycles as what is generally required in
Reinforcement Learning.

Our advantage in pass is quite obvious in RoboCup2002. According to the
statistical data, the counts of TsinghuAeolus’ successful pass are double as many
as that of the other top teams’.
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Table 2. Pass counts Statistic. The data are generated by Matrix’s Team Assistant’s
analysis on TsinghuAeolus’ logs in RoboCup2002

Opponent Team Success Pass Score

FCP2002 79 - 198 0 - 7
Everest 80 - 161 0 - 7

rUNSWIFTII 68 - 193 0 - 6

4 Adversarial Soccer Skill

Basic soccer skills, such as kicking, interception, dribbling and so on, are essential
for a soccer team. In simulation platform, these problems seem quite fitting the
classical machine learning techniques. Various algorithms, such as RL, A* and so
on, have been tried and worked well here. A more challenging problem is to exert
these skills in an adversarial environment. In [5], RL is used to learn dribbling
against an opponent. In [13], Q learning and A star algorithm are combined
to provide a fast and efficient approach for kicking in adversarial environment.
One of our innovations in TsinghuAeolus2002 is an adversarial interception skill
which is based on the further analysis of the interception problem.

Interception problem refers to how to turn and dash, for a given player, until
getting the ball given initial physical information of the ball and itself. Supervised
learning by collecting successful examples is an empirical way to obtain this
skill, which was recommended in [1]. But later, analytical way seems to be more
popular for the advantage of efficiency. [2] presents a numerical algorithm for
computing interception times. We have done the similar work and made some
improvement.

A simplified model of interception involves an arbitrary ball position Bp0,
initial ball speed Bv and its direction, and receiver position Pr. Other factors,
such as the receiver’s body facing, velocity and so on, can be considered heuris-
tically later. The ball’s moving route is fixed if random noise is not concerned,
The reachable area for the receiver in t cycles later is a circle with its initial
position as the center. The circle’s radius increases linearly by t in the receiver’s
maximal speed vp . With t as the third dimension, we can get a 3D view of the
interception process, as illustrated in figure 1. The ball’s route Cb is a curve and
the receiver’s reachable area Rr is a cone. The overlay part of Cb with Rp is
exactly the set of points where interception may be completed, which we call as
Sol. [2] calculates the least time to complete interception. But it’s not always
the best choice to intercept in the least time. Imagine such a scene, a player
lies in front of the ball when the ball is moving forward with a high speed, it’s
not wise for him to run backward to get the ball and then dribble forward. The
better choice is to run forward to meet with the ball. This kind of scene can be
found a lot in human’s match, especially in anti-offside case. So it’s useful to fig-
ure out Sol completely. In the 3D coordinate, Cb lies in an vertical plane which
intersects the surface of Rr in a hyperbola Cp. As has already been pointed out
in [2], there are at most three intersection points between Cb and Cp.

To look into this problem, assume Cp and the direction of the ball’s velocity
is fixed while Bv is alterable. With varying Bv, Cb may be tangent to Cp in
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Fig. 1. Interception
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Fig. 2. Two tangent cases

two cases, as illustrated in figure 2. The corresponding values of Bv are btangv0

and btangv1. The corresponding tangent points are ptang0 and ptang1. It’s easy
to know that there is only one intersection point between Cb and Cp when Bv0

is in (0, btangv0) or in (btangv1, +∞), two when Bv equals btangv0 or btangv1,
and three when Bv is in (btangv0, btangv1). Given Cp, ptang0 and ptang1 can be
approximately figured out by Newton methods with appropriate initial values
for update. Then the corresponding values of Bv are easy to figure out.

Back to the original problem where both Cp and Cb are given, we use Newton
Method to calculate the intersection points, plus some preprocess and tricky
treatment. Cp is first divided into two symmetrical parts at its apex ps. It’s
obvious that there is not more than one intersection point between the left part
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with Cb, which, if exists, can be figured out with standard Newton Method. For
the right part, assume there are three intersection points p0, p1 and p2. We only
discuss this case in the following. The other cases can be handled in a similar
and simpler way. It’s obvious that p0 lies between ps and ptang1, p1 between
ptang1 and ptang0, p1 between ptang0 and p+∞(a point in Cp whose x value is big
enough). We use fcb(x) to represent the function of Cb, and fcp(x) for the right
half of Cp. The standard Newton update equation is as following.

xi+1 = xi − fcp(xi) − fcb(xi)
f ′

cp(xi) − f ′
cb(xi)

(1)

But it’s possible to overshoot. f ′
cp(x) lies always in (0, vp). With the maximal

and minimal value replacing f ′
cp(x) in 1, We get the following two modified

update rules.

xi+1 = xi − fcp(xi) − fcb(xi)
0 − f ′

cb(xi)
(2)

xi+1 = xi − fcp(xi) − fcb(xi)
vp − f ′

cb(xi)
(3)

To take ps as the initial point and (2) as update rule, xi converges to x(p0).
Because in the iterations, xi+1 < xi, xi > x(p0), which is not hard to prove and
we don’t intend to detail here. Similarly, we can reach p1 by taking ps as the
initial point and (3) as update rule, p2 by taking p+∞ as the initial point and
(2) as update rule.

There is another related problem which is crucial for creating pass options
as introduced in Section 3. It originates from the need to know the minimal pass
speed to pass across some point before some player can get it. Here Cp, a point p
on it, and the direction of the ball’s velocity are given, and the problem equals to
figure out the maximum Bv when there is at least an intersection point before p
between Cb and Cp. The critical case must be that Cp and Cb intersect in either
ptang0 or p. Assume ptang0 and p is the intersection point separately, it’s easy to
get the corresponding values of Bv. The bigger one is exactly the answer.

5 Conclusion

The interception problem is a basic but important one. We present a thorough
view of it in analytical way, which leads to a stronger adversarial skill.

TsinghuAeolus have showed amazing passing skill in Fukuka. The crucial
component responsible for that includes the creation and evaluation of pass
options. It’s the accurate analysis of this problem that leads to our advantage.

An integral advice-taking system for an advised agent involves several steps:
receiving, parsing and taking. The scheme mechanism addresses the last step. It
can be attached to an existing complex agent without too much work. And it
forces few requirements on the existing agent’s framework. We also demonstrated
its effectiveness. With this mechanism as the basis, we’re working on agents’
adaptability in the hope of improving the on-line team’s behavior.



Technical Solutions of TsinghuAeolus for Robotic Soccer 213

References

1. Peter Stone. Layered Learning in Multi-Agent Systems. PhD Thesis, Computer
Science Dep.,Carnegie Mellon University, December 1998

2. Peter Stone and David McAllester. An architecture for action selection in Robotic
Soccer. In Fifth International Conference on Autonomous Agents(Agents’2001)

3. Paul Carpenter, Patrick Riley, Manuela Veloso and Gal Kaminka. Integration of
Advice in an Action-Selection Architecture

4. Sebastian Buck and Martin Riedmiller. Learning Situation Dependent Success
Rates of Action in A RoboCup Scenario. In PRICAI 2000, Melbourne, published
in Lecture Notes in Artificial Intelligence, Springer 2000, p809

5. Martin Riedmiller and Artur Merke. Using machine learning techniques in complex
multi-agent domains. In I. Stamatescu, W. Menzel, M. Richter and U. Ratsch
(eds.), Perspectives on Adaptivity and Learning (2002), LNCS, Springer

6. Remco de Boer and Jelle R. Kok. The Incremental Development of a Synthetic
Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simulation Team.
Master’s thesis, University of Amsterdam, The Netherlands, February 2002.

7. Jelle R. Kok, Remco de Boer, Nikos Vlassis, and F.C.A. Groen. UvA Trilearn 2002
team description. In G. Kaminka, P.U. Lima, and R. Rojas, editors, RoboCup 2002:
Robot Soccer World Cup VI, page 549, Fukuoka, Japan, 2002. Springer-Verlag.

8. Nuno Lau and Luis Paulo Reis. FC Portugal 2001 Team Description: Flexible
Teamwork and Configurable Strategy. RoboCup-2001: Robot Soccer World Cup V,
Andreas Birk, Silvia Coradeshi, Satoshi Tadokoro editors, LNAI, Springer Verlag,
2002

9. Richard Maclin and Jude W.Shavlik. Incorporating Advice into Agents that Learn
from Reinforcements. Proceeding of the Twelfth National Conference on Artificial
Intelligence.

10. Benjamin N. Grosof. Conflict handling in advice taking and instruction. Technical
report, IBM Research Report 20123, 1995.

11. Sutton, R.S., Precup, D., Singh, S. Between MDPs and semi-MDPs: A Frame-
work for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence
112:181-211. 1999

12. Jinyi Yao, Jiang Chen, Yunpeng Cai and Shi Li. Architecture of TsinghuAeo-
lus. RoboCup-2002: Robot Soccer World Cup V, Andreas Birk, Silvia Coradeshi,
Satoshi Tadokoro editors, LNAI, Springer Verlag, 2002

13. Jinyi Yao, Jiang Chen, and Zengqi Sun. An application in RoboCup combining
Q-learning with Adversarial Planning . In The 4th World Congress on Intelligent
Control and Automation(WCICA’2002).

14. TsinghuAeolus2001 Souce Code. Available in
http://www.lits.tsinghua.edu.cn/RoboCup.

15. Noda et al, RoboCup Soccer Server Users Manual, RoboCup Federation, June
2001.


	1 Introduction
	2 A Scheme Mechanism for Adaptability
	3 Action Selection for Ball Possession
	4 Adversarial Soccer Skill
	5 Conclusion
	References

