Weakly Supervised Natural Language Understanding

Ni Lao mosaix.ai 11.11.2018

For completeness a large part of the tutorial is from previous works. Thanks to Chen Liang for helping with creating these slides

Speaker Background

- **BS from Tsinghua U. EE (1999 2003)** Worked on the TsinghuAeolus system, and won world champion in RoboCup simulation league in 2001 and 2002
- **MS from Tsinghua U. CS (2003 2006)** Worked at Microsoft Research Asia on automatic OS diagnosis, Web search and product search
- PhD from Carnegie Mellon U. (2006 2012) Researched on IR, ML, NLP. Worked on the CMU JAVELIN QA system, and Never-Ending Learning (NELL) system
- **Research Scientist Google (2012 2017)** Researched on KG construction, semantic parsing. Worked on KG and Web-based QA products
- Chief Scientist & Co-founder Mosaix.ai (2018) Research on semantic parsing and text understanding for search and NLU services. And we are hiring!

Plan

Weak Supervision NLP

- NLP, AI, software 2.0
- Semantics as a foreign language
- Unsupervised learning
- Knowledge representation (symbolism)

• Semantic Parsing Tasks

• WebQuestionsSP, WikiTableQuestions

• Neural Symbolic Machines (ACL 2017)

- Compositionality (short term memory)
- Scalable KB inference (symbolism)
- RL vs MLE

• *Memory Augmented Policy Optimization* (NIPS 2018)

- Experience replay (long term memory & optimal updating strategy)
- Systematic exploration
- Memory Weight Clipping (unbiased cold start strategy)

Access slides and join discussions at weakly-supervised-nlu google group

Mobile

Desktop

Natural Language Processing (NLP)

- Enables machines to understand and assists human
- A major problem of AI (AI-complete)
- Leads to new theories in cognitive science

There can be two underlying motivations for building a computational theory. The **technological goal** is simply to build better computers, and any solution that works would be acceptable. The **cognitive goal** is to build a computational analog of the human-language-processing mechanism; such a theory would be acceptable only after it had been verified by experiment. -- James Allen, 1987

Adoption Of Voice Technology

- Google's Speech Internationalization Project: From 1 to 300 Languages and Beyond [Pedro J. Moreno, 2012]
- My daughter adopted YouTube voice command since 2 years old
- 20% of the U.S. population has access to smart speakers [Techcrunch, 2018]
- Rising adoption in the Asia Pacific

Language understanding for AI and humanity

• Experts with different views of AI agree on the potential of NLP

If you got a billion dollars to spend on a huge research project that you get to lead, what would you like to do? -- r/CyberByte, 2015 NLP is fascinating, allowing us to focus on highly-structured inference problems, on issues that go to the core of "what is thought" but remain eminently practical, and on a technology that surely would make the world a better place.

-- Michael I Jordan

What kind of impact you hope deep learning has on our future? -- Steve Paikin, 2016 I hope it allows Google to ... search by the content of the document rather than by the words in the document ... I hope it will make for intelligent personal systems, who can answer questions in a sensible way ... It will make computers much easier to use. Because you'll be able to just say to your computer "print this damn thing" -- Geoffrey Hinton

What is understanding?

"If they find a parrot who could **answer** to everything, I would claim it to be an **intelligent** being without hesitation.", -- Alan Turing, 1950 Does the machine literally "**understand**" Chinese ? Or is it merely **simulating** the ability to understand Chinese? -- John Searle, 1980

The Chinese Room Argument

Full Supervision NLP

• Traditionally NLP is a labor-intensive business

Software 2.0

- 1. specify some goal on the behavior
 - e.g., "satisfy input output pairs of examples",
 - e.g.,"win a game of Go"
- 2. write a rough skeleton of the code that identifies a subset of program space to search
 - e.g. a neural net architecture
- 3. use the computational resources at disposal to search this space for a program that works.

Death of feature engineering. (The) **users** of the software will (play) a direct role in building it. **Data labeling** is a central component to system design.

[Karpathy 2017; Watson 2017; Ratner+ 2018]

Where does knowledge come from?

• Can only cover the most popular semantics used by human

expert systems with knowledge bases

Weak Supervision NLP

- Avoid the knowledge acquisition bottleneck with machine learning
- Then we can cover all possible semantics used by human

end to end examples (e.g., QA pairs)

machine learning

intelligent systems with knowledge

Language & Reasoning

- The formalist view
 - Language was primarily invented for reasoning [Everaert+ 2015]
- The functionalist view
 - Language is for communication [Kirby 2017]
- Cognitive coupling hypothesis
 - sequential processing is "necessary for behaviours such as primate tool use, navigation, foraging and social action." [Kolodny & Edelman 2018]

WHY ONLY US LANGUAGE AND EVOLUTION

Robert C. Berwick - Noam Chomsky

Reasoning is needed to understand text

[Liang+ 2017]

Semantics is a language for computation

"impressionist

painters

during the 1920s"

painters [/painting] !/art_forms

impressionist <visual_artist> x.[/associated_periods_or_movements = /impressionism]

<artist> during the 1920s x.[/date_of_work < 1930; /date_of_work > 1920]

Semantics is a language for computation

15

LOGIC AND MATHEMATICS ARE NOTHING BUT SPECIALISED LINGUISTIC STRUCTURES.

Semantics as a foreign language

 Natural languages are programming languages to control human behavior (either others or self)

 For machines and human to understand each other, they just need translation models trained with control theory

16

NLU with Unsupervised Learning

• **Supervised** learning needs either feature engineering for compact representation or large amount of labeled data

Unsupervised learning produces
 better representations and reduces
 the labeling cost, and it is easily
 transferable!

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

LeCun's Cake

NIPS [LeCun 2016]

Pre-Trained Word Embeddings

LSA [Deer-wester+ 1990] skip-gram [Mikolov + 2013] Glove [Pennington+ 2014]

- learning (**non-contextual**) word embeddings from text
 - matrix factorization on global **word-word co-occurrence counts** [1990]
 - **local context window** methods [2014] will come back to this in 2018
 - weighted least squares on global **word-word co-occurrence counts** [2014]
- Co-occurrence statistics as an efficient approximation to the original text

Probability and Ratio	k = solid	k = gas	k = water	k = fashion						
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}						
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}						
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96						
$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$										

Pre-Trained Word Embeddings

LSA [Deer-wester+ 1990] skip-gram [Mikolov + 2013] Glove [Pennington+ 2014]

Compact representations for **syntax**, **common sense** and **world knowledge**

[Devlin+ 2018] [Radford+ 2018] [Peters+ 2018]

Pre-Trained Sequence Models

With a lot more **computational power** we have **language modeling sequence models** which converts sequences of tokens to sequences of **contextual embeddings**

[Devlin+ 2018] [Radford+ 2018] [Peters+ 2018]

Pre-Trained Sequence Models

Differences in pre-training model architectures.

BERT uses a bidirectional Transformer. OpenAl **GPTuses** a left-to-right Transformer. **ELMo** uses the concatenation of independently trained left-to-right and right-to-left LSTM.

[Devlin+ 2018] [Radford+ 2018] [Peters+ 2018]

Pre-Trained Sequence Models

2018 is the year of Pre-Trained Sequence Models

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Knowledge Representation & Scalability

PROBABLY APPROXIMATELY CORRECT Aure's Agarithms for Learning and Prospering in a Complex World LESLIE VALIANT

the world

a small machine which copies the complexity of the world to the brain

a suitable representation

Mandelbrot Set

$$c \in M \iff \lim_{n \to \infty} |z_{n+1}| \le 2$$
 25

[Vannevar Bush 1945]

Internet as an external memory

 How information should be organized for scalability?

"AS WE MAY THINK" (1945)

Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and to coin one at random, memex will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory.

[Brin & Page 1998]

The scalability of modern search engines

- Can respond to user's requests within a fraction of a second
- But are weak at text understanding and complex reasoning

Can we search entities on the web?

• Multimedia, business, products have a lot of reviews and descriptions

Traditional IR approach lacks understanding

• Need to interpret the meaning from the surface text

Does it have handicap parking?

Search

Return 1000 results

0. Hampton Inn Pittsburgh University/Medical Center Hotels, Event Planning & Services, Hotels & Travel 22.781746 Explain to me why I need to pay for parking when they do NOT have enough spots, they do NOT enforce parking, and we had a handicap guest with us and no handicap spots were

guest with us and no **handi**cap spots were available because NON HANDICAP vehicles were parked in handicap spots. Mangement basically laughed in my face and did not seem to care. So not worth it NOTHING worse then RUDE STAFF!!!! 1. Krispy Kreme Doughnuts Donuts, Cafes, Restaurants, Coffee & Tea, Food 21.621763 Monstrously stupid people must run this place. Who keeps the outside doors closest to the handicapped parking spaces locked? Do they not understand that the handicapped have mobility issues? 2. Gordon Biersch Brewery Restaurant American (Traditional), Breweries, Sandwiches, American (New), Nightlife, Bars, Restaurants, Food

21.535166

Parking for carryout, but NO HANDICAPPED PARKING! Was in the area and decided to stop for lunch. Place was empty. Service was great, food ok. Only thing special was the fries. Shrimp salad was missing a lot of shrimp. Biggest complaint was the lack of handicap parking. They do have two slots right in front for carry out, but the only handicapped slots were two stores down at the end of the complex. Wonder 29

Question answering as a simple test bed

• A good semantic representation should support reasoning at scale

[Hochreiter & Schmidhuber 1997][Graves 2013][Sutskever, Vinyals, Le 2014][Cho+ 2014] [Kingma, Welling 2014]

[Goodfellow+ 2014]

Three approaches to generative models

• Autoregression (e.g., LM), VAE, GAN

[Rajeswar+ 2017]

Immediately criticised when applied to text

- "I have a lot of respect for language. Deep-learning people seem not to"
- "They include such impressive natural language sentences as:"
 - * what everything they take everything away from
 - * how is the antoher headache
 - * will you have two moment ?
 - * This is undergoing operation a year .
- "These are not even grammatical!"
- The DNN bubble consists of models, which show great promises but not yet practical at this point

furiousSeq2Seq [Sutskever, Vinyals, Le 2014]
VAE [Kingma & Welling 2014]
GAN [Goodfellow+ 2014]
ACL [Goldberg 2015]
ACL [Mooney 2015]

Given the power of deep learning anything can be mapped to a unit Gaussian ball

The world has real structures, which need to be represented by real structures

Scalability of mammal memory

- Very rapid adaptation (in just one or a few trials) is necessary for survival
 - \circ $\,$ E.g., associating taste of food and sickness $\,$
- Need fast responses based on large amount of knowledge
 - Needs good representation of knowledge
- However, good representation can only be learnt gradually
 - During sleeps to prevent interference with established associations

[Garcia+ 1966] [Wickman 2012] [Bartol+ 2015]

Scalability of Cognitive Architectures

- The design of mammalian brains is inspiring to NLP systems
 - they are solving similar problems
- The design has not changed much since 30 years ago
 - "We've totally solved it already ... it is just a matter of job security"
 -- Nate Derbinsky, Northeastern U.
- Today we have
 - internet economy and data
 - computation and ML development

https://soar.eecs.umich.edu

Plan

• Weak Supervision NLP

- NLP, AI, software 2.0
- Semantics as a foreign language
- Unsupervised learning
- Knowledge representation (symbolism)

• Semantic Parsing Tasks

• WebQuestionsSP, WikiTableQuestions

• Neural Symbolic Machines (ACL 2017)

- Compositionality (short term memory)
- Scalable KB inference (symbolism)
- RL vs MLE

• *Memory Augmented Policy Optimization* (NIPS 2018)

- Experience replay (long term memory & optimal updating strategy)
- Systematic exploration
- Memory Weight Clipping (unbiased cold start strategy)

Access slides and join discussions at weakly-supervised-nlu google group

Mobile

Desktop

Semantic Parsing

 Natural language queries or commands are converted to computation steps on data and produce the expected answers or behavior

Related Works

- Training from full supervision is labor-intensive
 - DeepCoder [Balog, 2016]
 - NPI [Reed & Freitas, 2015]
 - Seq2Tree [Dong & Lapata, 2016]

o ...

- Traditional semantic parsing models require feature engineering
 - SEMPRE [Berant et al, 2013]
 - STAGG [Yih et al, 2015]

o ...

- End-to-end differentiable models cannot scale to large databases
 - Neural Programmer [Neekalantan et al, 2015]
 - Neural Turing Machines [Graves et al, 2014]
 - Neural GPU [Kaiser & Sutskever, 2015]

o ..

- Combine deep learning, symbolic reasoning and reinforcement learning
 - Neural Symbolic Machines (Liang, Berant, Le, Forbus, Lao, 2017)
 - Memory Augmented Policy Optimization (MAPO) (Liang, Norouzi, Berant, Le, Lao, 2018)

Question Answering with Knowledge Base

WebQuestions: motivation

Motivation: Natural language interface to large structured knowledge-bases

Background: availability of many structured datasets (Google KG, Bing Satori, Freebase, DBPedia, Yelp, ...)

[Singhal, Google 2012] [Qian, Bing 2013] [Berant+ 2013]

WebQuestions: getting questions

Goal: collect large number of natural language queries

Strategy: breadth-first search over Google Suggest graph results in 1M queries

[Berant+ 2013]

[Sproat 2016]

Freebase

Motivation: overcome the limitations of computers -- machines struggle to absorb knowledge in the way humans do.

Solution: a large collaborative knowledge base consisting of data (int triple format) composed mainly by its community members.

Later acquired by Google (discontinued)

41M entities (nodes) 19K properties (edge labels) 596M assertions (edges)

WebQuestions: getting Freebase answers [Berant+ 2013]

Goal: obtain label from non-experts

Strategy: Amazon Mechanical Turk (AMT)

- Given a query e.g. "Eric Clapton hometown" detect if there is a single named entity "Eric Clapton"
- Ask the worker to pick one (or more) of the possible entities/values ("Ripley") on the entity Freebase page
- Cost \$0.03 per question

Freebase.com page circa 2011 © Metaweb/Google

WebQuestionsSP Dataset

- 5,810 questions from Google Suggest API & Amazon MTurk¹
- Remove invalid QA pairs²
- 3,098 training examples, 1,639 testing examples remaining
- Open-domain and contains grammatical error
- Multiple entities as answer => macro-averaged F1

Grammatical error

Multiple entities

- What do Michelle Obama do for a living?
- What character did Natalie Portman play in Star Wars?
- What currency do you use in Costa Rica?
- What did Obama study in school?
- What killed Sammy Davis Jr?

writer, lawyer Padme Amidala Costa Rican colon political science throat cancer

SEMPRE: paraphrase

[Berant+ 2013] [Lin+ 2012] [Fader+ 2011]

Collect entity pair observations for phrases and augmented predicates (which partially solves the search problem)

... ...

... ...

15M triples (of 15k phrases)

(Barack Obama, was born in, Honolulu)

- (Albert Einstein, was born in, Ulm)
- (Barack Obama, lived in, Chicago)

600M triples (of 60k augmented predicates)

(BarackObama, PlaceOfBirth, Honolulu) (Albert Einstein, PlaceOfBirth, Ulm) (BarackObama, PlacesLived.Location, Chicago)

[Berant+ 2013]

SEMPRE: paraphrase

 Construct lexicon and alignment features based on entity pair cooccurrences

Alignment features-

log-phrase-count:log(15765) log-predicate-count: log(9182) log-intersection-count: log(6048) KB-best-match: 0

SEMPRE: compositionality

The **semantic** structure (logic form) is coupled with **syntactic** structure (surface patterns) through composition rules

SEMPRE: search: bridging

[Berant+ 2013]

Motivation: individual words can

be highly ambiguous

- What government does Chile have?
- What is Italy's language?
- Where is Beijing?
- What is the cover price of X-men?

Solution: the bridging operation generates predicates compatible with neighboring predicates

Which

48

[Berant+ 2013]

SEMPRE: modeling

Log linear model over derivations *d* given utterance *x* with expert designed features

$$p_{\theta}(d \mid x) = \\ \frac{\exp\{\phi(x,d)^{\top}\theta\}}{\sum_{d' \in D(x)} \exp\{\phi(x,d')^{\top}\theta\}}$$

Category	Description	
Alignment	Log of # entity pairs that occur with the	
	phrase $r_1(\mathcal{F}(r_1))$ Log of # entity pairs that occur with the	
	logical predicate $r_2 \left(\mathcal{F}(r_2) \right)$	
	Log of # entity pairs that occur with both	
	$r_1 ext{ and } r_2 \left(\left \mathcal{F}(r_1) \cap \mathcal{F}(r_2) ight ight)$	
	Whether r_2 is the best match for r_1 ($r_2 =$	
	$\arg \max_r \mathcal{F}(r_1) \cap \mathcal{F}(r))$	
Lexicalized	Conjunction of phrase w and predicate z	
Text similarity	Phrase r_1 is equal/prefix/suffix of s_2	
	Phrase overlap of r_1 and s_2	
Bridging	Log of # entity pairs that occur with bridg-	
	ing predicate $b(\mathcal{F}(b))$	
	Kind of bridging (# unaries involved)	
	The binary b injected	
Composition	# of intersect/join/bridging operations	
	POS tags in join/bridging and skipped	
	words	
	Size of denotation of logical form	

Table 1: Full set of features. For the alignment and text similarity, r_1 is a phrase, r_2 is a predicate with Freebase name s_2 , and b is a binary predicate with type signature (t_1, t_2) .

STAGG: paraphrase

[Yih+ 2015] [Shen+ 2014] [Gabrilovich+ 2013]

3 matching models based on char-ngram conv nets (Sent2vec [Shen+ 14])

Pattern-Chain:who voiced meg on <e>Question-EntPred:who voiced meg on family guyClueWeb12:voiced homer on <e>

cast-actor Meg Griffin cast-actor cast-actor

STAGG: search

Staged Query Graph Generation

"Who first voiced Meg on Family Guy?"

1) decide the topic entity

[Yih+ 2015] [Yang & Chang 2015]

2) decide the core inference chain

3) add type/aggregation constraints

STAGG: search

[Yih+ 2015]

keeps up to N candidate states in the priority queue (N = 1000)

+10 special rules to restrict the type/aggregation constraints

e.g. Consider "to" predicates (indicating the ending time of an event) only when the question contains "last", "latest" or "newest"

Domain knowledge is often very important for structure search problems. Will revisit in WikiTableQ

Algorithm 1 Staged query graph generation

Require: Priority queue H with limited size N

- 1: $s_o \leftarrow \phi; r_o \leftarrow -\infty$
- 2: $H.add(s_o, r_o)$
- 3: while *H* is not empty do
- 4: $s, r \leftarrow H.pop()$
- 5: **if** $r > r_o$ **then**
- 6: $s_o \leftarrow s; r_o \leftarrow r;$
- 7: **end if**
- 8: for all $a \in \Pi(s)$ do
- 9: $s' \leftarrow T(s, a)$
- 10: $H.add(s', \gamma(s'))$
- 11: end for
- 12: end while
- 13: **return** *s*_o

[Yih+ 2015] [Burges 2010]

STAGG: modeling

Learning to rank model (for query graph candidates) based on expert designed features

+10 special features on the type/aggregation constraints

(4) ClueWeb("who first voiced meg on <e>", cast-actor) = 0.2

- (5) ConstraintEntityWord("Meg Griffin", q) = 0.5
- (6) ConstraintEntityInQ("Meg Griffin", q) = 1

(7) AggregationKeyword(argmin, q) = 1

(8) NumNodes(s) = 5

(9) NumAns(s) = 1

Brief Summary & Preview

DL leads to the death of feature engineering (but not domain knowledge) DL makes it easier to leverage pre-trained unsupervised models

	SEMPRE/STAGG	This talk
Paraphrase (semi-supervised)	Co-occurrences collected from 1B docs (ClueWeb) and Freebase	Embeddings trained from 840B text tokens (GloVe)
Compositionality	Relies on syntactic structure (text spans) and domain specific rules to constrain the generation of logic forms	A (LISP like) language specify computations on KG
Search	priority queue & heuristic rules	RL & a program interpreter with syntactical & semantic checks
Modeling	Expert designed features	Deep learning

WikiTableQuestions: Dataset

Breadth

• No fixed schema: Tables at test time are not seen during training, needs to generalize based on column name.

Depth

- More compositional questions, thus require longer programs
- More operations like arithmetic operations and aggregation operations

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

- x_1 : "Greece held its last Summer Olympics in which year?" y_1 : {2004}
- x_2 : "In which city's the first time with at least 20 nations?" y_2 : {Paris}
- x_3 : "Which years have the most participating countries?" y_3 : {2008, 2012}
- x₄: "How many events were in Athens, Greece?"
- $y_4: \{2\}$
- x_5 : "How many more participants were there in 1900 than in the first year?"
- $y_5: \{10\}$

WikiTableQuestions: semantics

Function	Arguments	Returns	Description
(hop v p)	v: a list of rows.p: a column.	a list of cells.	Select the given column of the given rows.
(argmax v p) (argmin v p)	 v: a list of rows. p: a number or date column. 	a list of rows.	From the given rows, select the ones with the largest / smallest value in the given column.
$(filter_{>} v q p)$ $(filter_{>} v q p)$ $(filter_{<} v q p)$ $(filter_{<} v q p)$ $(filter_{<} v q p)$ $(filter_{=} v q p)$ $(filter_{\neq} v q p)$	 v: a list of rows. q: a number or date. p: a number or date column. 	a list of rows.	From the given rows, select the ones whose given column has certain order relation with the given value.
(filter _{in} v q p) (filter _{!in} v q p)	 v: a list of rows. q: a string. p: a string column. 	a list of rows.	From the given rows, select the ones whose given column contain / do not contain the given string.

WikiTableQuestions: semantics

(first v) (last v)	v : a list of rows.	a row.	From the given rows, select the one with the smallest / largest index.
(previous v) (next v)	v : a row.	a row.	Select the row that is above / below the given row.
(count v)	v : a list of rows.	a number.	Count the number of given rows.
(max v p) (min v p) (average v p) (sum v p)	v: a list of rows.p: a number column.	a number.	Compute the maximum / minimum / average / sum of the given column in the given rows.
(mode v p)	v: a list of rows.p: a column.	a cell.	Get the most common value of the given column in the given rows.
*(same_as v p)	v: a row. p: a column.	a list of rows.	Get the rows whose given column is the same as the given row.
(diff v0 v1 p)	 v0: a row. v1: a row. p: a number column. 	a number.	Compute the difference in the given column of the given two rows.

WikiTableQuestions: search

[Pasupat & Liang, 2015] [Zhang, Pasupat & Liang, 2017] [Liang+ 2018]

Feature engineering is dead. It is survived by program space design.

(when t-alternative (rule \$AnchoredOr (\$LEMMA_TOKEN) (FilterTokenFn lemma and or) (anchored 1))

(when t-movement

(rule \$AnchoredMovement (\$LEMMA_TOKEN) (FilterTokenFn lemma next previous after before above below) (anchored 1))

(when t-comparison (rule \$AnchoredMore (\$LEMMA_TOKEN) (FilterTokenFn lemma more than least above after) (anchored 1))

(when t-superlative

(rule \$SuperlativeTrigger (\$LEMMA_TOKEN) (FilterPosTagFn token JJR JJS RBR RBS) (anchored 1)) (rule \$SuperlativeTrigger (\$LEMMA_TOKEN) (FilterTokenFn lemma top first bottom last) (anchored 1))

(when t-arithmetic

(rule \$AnchoredSub (\$LEMMA_TOKEN) (FilterTokenFn lemma difference between and much) (anchored 1))

••••

WikiTableQuestions: example solutions

Superlative

nt-13901: the most points were scored by which player?

(argmax all_rows r.points-num) (hop v0 r.player-str) Sort all rows by column 'points' and take the first row. Output the value of column 'player' for the rows in v0.

Difference

nt-457: how many more passengers flew to los angeles than to saskatoon?

(filter_{in} all_rows ['saskatoon'] r.city-str) (filter_{in} all_rows ['los angeles'] r.city-str) (diff v1 v0 r.passengers-num)

Find the row with 'saskatoon' matched in column 'city'. Find the row with 'los angeles' matched in column 'city'. Calculate the difference of the values in the column 'passenger' of v0 and v1.

More examples

Before / After

nt-10832: which nation is before peru?
(filter _{in} all_rows ['peru'] r.nation-str)
$(\mathbf{provious} \mathbf{v}0)$

(previous v0) (hop v1 r.nation-str) Find the row with 'peru' matched in 'nation' column. Find the row before v0. Output the value of column 'nation' of v1.

Compare & Count

nt-647: in how many games did sri lanka score at least 2 goals?

(filter \geq all_rows [2] r.score-num)Select the rows whose value in the 'score' column >= 2.(count v0)Count the number of rows in v0.

Exclusion

nt-1133: other than william stuart price, which other businessman was born in tulsa?(filter $_{in}$ all_rows ['tulsa'] r.hometown-str)Find rows with 'tulsa' matched in column 'hometown'.(filter $_{!in}$ v0 ['william stuart price'] r.name-str)Drop rows with 'william stuart price' matched in the
value of column 'name'.(hop v1 r.name-str)Output the value of column 'name' of v1.

Neural Program Induction & Scalabilities

• Impressive works to show NN can learn addition and sorting, but...

• The learned operations are not as scalable and precise.

 Why not use existing modules that are scalable, precise and interpretable?

Google Search

I'm Feeling Lucky

[Zaremba & Sutskever 2016]

Plan

• Weak Supervision NLP

- NLP, AI, software 2.0
- Semantics as a foreign language
- Unsupervised learning
- Knowledge representation (symbolism)

• Semantic Parsing Tasks

• WebQuestionsSP, WikiTableQuestions

• Neural Symbolic Machines (ACL 2017)

- Compositionality (short term memory)
- Scalable KB inference (symbolism)
- RL vs MLE

• *Memory Augmented Policy Optimization* (NIPS 2018)

- Experience replay (long term memory & optimal updating strategy)
- Systematic exploration
- Memory Weight Clipping (unbiased cold start strategy)

Access slides and join discussions at weakly-supervised-nlu google group

Mobile

Desktop

[Hochreiter & Schmidhuber 1997] [Sutskever, Vinyals, Le 2014]

A bit background on Seq2Seq

- Separate a sequence model in to encoder and decoder
- Improves a phrase-based SMT system by re-ranking top candidates
- Cannot perform well by itself due to the information bottleneck

Re-thinking sequence-to-sequence learning

- Cooperation among three agents
- 1. Agent 1 (Encoder): transforms the source sentence into a set of code vectors in a memory
- Agent 2 (Search): searches for relevant code vectors in the memory based on the command from the Agent 3 and returns them to the Agent 3.
- Agent 3 (Decoder): observes the current state (previously decoded symbols), commands the Agent 2 to find relevant code vectors and generates the next symbol based on them.

Re-thinking sequence-to-sequence learning

- 1. Don't generate from the ball of Z
- 2. Generate from a sequence of source token ids, which encodes the semantics of the target sentence

Language to Logical Form with Neural Attention

- "compared to previous methods our model achieves similar or better performance .. with no hand-engineered .. features."
- Relies on full supervision (labeled logical forms)

LSTM & Lapata's scream

• LSTM has been applied to all kinds of NLP tasks and has greatly simplified system designs

What now? Is NLP DEAD?

• The need for symbolic operations and effective model optimization

	SEMPRE/STAGG	This talk
Paraphrase (semi-supervised)	Co-occurrences collected from 1B docs (ClueWeb) and Freebase	Embeddings trained from 840B text tokens (GloVe)
Compositionality	Relies on syntactic structure (text spans) and domain specific rules to constrain the generation of logic forms	A (LISP like) language specify computations on KG
Search	priority queue & heuristic rules	RL & a program interpreter with syntactical & semantic checks
Modeling	Expert designed features	Deep learning

Connectionism vs Symbolism

The symbolic models represents elegant solutions to problems, and have been dominating AI for a very long time

VS.

Once we have figured out how to train them, the connectionism approaches starts to win

a sequence of symbols

[Stensola+ 2012]

Symbolic Machines in Brains

Location cells & grid cells

- 2014 Nobel Prize in Physiology or Medicine awarded for 'inner GPS' research
- Positions are represented as discrete representations in animals' brains, which enable accurate and autonomous calculations

Neural Symbolic Machines

ACL [Liang+ 2017]

Computer with Domain Specific Languages

- Lisp Interpreter
 - Program => $\exp_1 \exp_2 \dots \exp_n <END>$
 - Exp => $(f arg_1 arg_2 \dots arg_n)$

- What functions will be useful for the given task?
 - 10 operations for WebQuesitons
 - 22 different operations for WikiTableQuestions
 - hop
 - argmax, argmin
 - filter_, filter_, filter_, filter_, filter_, filter_, filter_, filter_,
 - first, last, previous, next
 - max, min, average, sum, mode, diff, same

Code Assistance to Prune Search Space

_ [] X File Edit Search View Project Execute Debug Tools CVS Window Help ◎ < □ 🛛 🖓 🎕 🖴 🚧 💁 🖓 🖉 🖓 🕾 🚇 💭 🔐 🗖 🖽 🖌 💡 🎯 🗌 New 🗐 Insert 🖓 Toggle 🔲 Gold Project Classes EffectProcessor.cop [1] MidThread.cop Effect.h E-Bythmix E 😸 Audio audio.h bool MidiThread::Poll() audiotypes h Calibrate cop Calbrate h Convert.cpp DeviceList.h yoid MidiThread::AnalyzeMidi() Effect.cop Ellect h 1 if (|midi_msg[0] == N_START) || (midi_msg[0] == N_CONT) EffectProcessor.c EffectProcessor. frame->Play(true); HaikuEffect.cop HaikuEffect.h else if (midi msg[0] == X STOP) 🔄 Gui Beat cop Beath frame->Stop(); BeatBar.cpp BeatSec-> BeatBar, h Destructo "BeatSequencer BeatSequencer c else if (Cont - Function void AddTrack (TrackBar *t) BeatSequencer h Controller- Constructor BeatSequencer (wxFrameParent *parent, 1d1(msq[2]); BlockButton cop else if ((STA = Function void ClearBeats II US(midi mag[0]) == N BlockButton h Function void ClearTracks [] B:Button.cop BeatSeg-> Variable vector(Beat *) CurrentBeat sg[1], midi_msg[2]); BsButton.h void HideBeat (Beat 'b) Function ButtonTrack.cpp void OnMouseEvent (wwMouseEvent &ev Function else if (STAT Button Track,h Eurotian void OnScroll (wsScrolEvent Levent) Function void OnSize (vx:SizeEvent &event) Variable int PixelPerMeasure 🔐 Compiler | 🌆 Resources | 🏥 Compile Log 🔗 Debug | 🗔 F 🗖 void ProcessMidi (int chan, int cont, numb) Function void RefreshView II Function Watched Variables Backtrace C Function void RemoveSelected (void) void SelectAll (void) unchinn Variable Name Value Add Watch Remove watch Debug 4:1 Modified Insert 24 Lines in file

ACL [Liang+ 2017]

Pen and paper

Code Assistance: Syntactic Constraint

Decoder Vocab

Variables: <10

Code Assistance: Syntactic Constraint

Decoder Vocab

Last token is '(', so has to output a function name next.

Code Assistance: Semantic Constraint

Code Assistance: Semantic Constraint

Given definition of Hop, need to output a predicate that is connected to R2 (m.USA).

Key-Variable Memory for Semantic Compositionality

• Equivalent to a linearised bottom-up derivation of the recursive program

Save Intermediate Values

Reuse Intermediate Values

Augmented REINFORCE

- REINFORCE get stuck at local maxima
- Iterative ML training is not directly optimizing the F1 score
- Augmented REINFORCE obtains better performances

Settings	Train Avg. F1@1	Valid Avg. F1@1
iterative ML only	68.6	60.1
REINFORCE only	55.1	47.8
Augmented REINFORCE	83.0	67.2

State-of-the-Art on WebQuestionsSP

- First end-to-end neural network to achieve SOTA on semantic parsing with weak supervision over large knowledge base
- The performance is approaching SOTA with full supervision

Model	Avg. Prec.@1	Avg. Rec.@1	Avg. F1@1
STAGG	67.3	73.1	66.8
NSM – our model	70.8	76.0	69.0
STAGG (full supervision)	70.9	80.3	71.7

ACL [Liang+ 2017]

Plan

• Weak Supervision NLP

- NLP, AI, software 2.0
- Semantics as a foreign language
- Unsupervised learning
- Knowledge representation (symbolism)

• Semantic Parsing Tasks

• WebQuestionsSP, WikiTableQuestions

• Neural Symbolic Machines (ACL 2017)

- Compositionality (short term memory)
- Scalable KB inference (symbolism)
- RL vs MLE

• *Memory Augmented Policy Optimization* (NIPS 2018)

- Experience replay (long term memory & optimal updating strategy)
- Systematic exploration
- Memory Weight Clipping (unbiased cold start strategy)

Access slides and join discussions at weakly-supervised-nlu google group

Mobile

Desktop

What is RL?

Directly Optimizing The Expected Reward

• MLE optimizes the log likelihood of target sequences

$$J^{ML}(\theta) = \sum_{q} \log P(a_{0:T}^{best}(q)|q,\theta)$$

$$J^{RL}(\theta) = \sum_{q} \mathbb{E}_{P(a_{0:T}|q,\theta)}[R(q, a_{0:T})]$$

[Williams 1992] [Sutton & Barto 1998]

UCANT BE SERIOUS

Challenges of applying RL

- Large search space (sparse rewards)
 - Supervised pretraining (MLE)
 - Systematic exploration [Houthooft+ 2017]
 - Curiosity [Schmidhuber 1991][Pathak2017]

Book [Sutton & Barto 1998] NIPS [Abbeel & Schulman 2016]

- Credit assignment (delayed reward)
 - Bootstrapping
 - E.g., AlphaGo uses a value function to estimate the future reward
 - Rollout n-steps
- Train speed & stability (optimization)
 - Trust region approaches (e.g., PPO)
 - Experience replay Cur focus today

Efficiency challenge

- RL is still far from data efficient
 - E.g. the best learning algorithm (DeepMind RainbowDQN) "passes median human performance on 57 Atari games at about 18 million frames (around 90 hours) of gameplay, while most humans can pick up a game within a few minutes."
- How to improve its efficiency?

Credit to Alex Irpan 2018 from Google Brain Robotics

Applying RL to NLP

- Benefits of RL
 - Weak supervision (e.g., expected answer, user clicks)
 - Directly optimizing the metric (e.g., F1, accuracy, BLEU etc.)
 - Work with structured hidden variables (e.g., logical forms/programs)
- Challenges with existing solutions
 - Large search space sparse reward often leads to slow and unstable training
 - Spurious reward often lead to biased solutions

RL models generate their own training data

- Training sample management issue
 - Too many low quality examples \Rightarrow slow training
 - Boosting high reward experience \Rightarrow biased training

Complementary Learning Theory

[McClelland+ 1995] [Kumaran+ 2016]

Most of the past experience are not helpful for improving the current model

Mammals learn from "interesting" dreams

- In early 2000s, scientists discovered that animals have complex dreams and are able to retain and recall long sequences of events while they are asleep.
- Recent studies indicate that by consolidating memory traces with high emotional / motivational value, "sleep and dreaming may offer a neurobehavioral substrate for the offline ... learning"

Image courtesy of Kote on Drawception.com, 2012

Augment REINFORCE with Memory

Linear combination of maximum likelihood objective and expected return:

 λ log-likelihood on a top-k buffer + (1 - λ) expected return

$$\lambda \sum_{y \in \text{TopK}} \log p(y \mid x) + (1 - \lambda) \mathbb{E}_{\tilde{y} \sim p(y \mid x)} R(\tilde{y})$$

- Not robust against spurious programs
- The composite objective is ad-hoc, and the gradient is biased

Spurious programs: right answer, wrong reason

Rank	Nation	Gold	Silver	Bronze	Total
1	Nigeria	14	12	9	35
2	Algeria	9	4	4	17
3	Kenya	8	11	4	23
4	Ethiopia	2	4	7	13
5	Ghana	2	2	2	6
6	Ivory Coast	2	1	3	6
7	Egypt	2	1	0	3
8	Senegal	1	1	5	7
9	Morocco	1	1	1	3
10	Tunisia	0	3	1	4
11	Madagascar	0	1	1	2
12	Rwanda	0	0	1	1
12	Zimbabwe	0	0	1	1
12	Seychelles	0	0	1	1

Which nation won the most silver medal?

Correct program: (argmax rows "Silver") (hop v1 "Nation")

Many spurious programs: (argmax rows "Gold") (hop v1 "Nation")

(argmax rows "Bronze") (hop v1 "Nation")

(argmin rows "Rank") (hop v1 "Nation")

. . .

Combating spurious rewards

• **Reinforce** a **rewarded experience** only if the model (current policy) also thinks that it is the right thing to do

NIPS [Liang+ 2018] Memory Augmented Policy Optimization (MAPO)

Lower the gradient variance without introducing bias

Given a memory buffer of (sequence, return) pairs: $\mathcal{B} \equiv \left\{ (y^{(i)}, r^{(i)}) \right\}_{i=1}^{n}$, re-express expected return as,

$$p(\mathcal{B}) \underbrace{\mathbb{E}_{p(\tilde{y})|\tilde{y}\in\mathcal{B}}R(\tilde{y})}_{\mathbb{E}_{p(\tilde{y})|\tilde{y}\notin\mathcal{B}}R(\tilde{y})} + (1-p(\mathcal{B})) \underbrace{\mathbb{E}_{p(\tilde{y})|\tilde{y}\notin\mathcal{B}}R(\tilde{y})}_{\mathbb{E}_{p(\tilde{y})|\tilde{y}\notin\mathcal{B}}R(\tilde{y})}$$

inside the buffer

outside the buffer

Importance sampling

- Sample more frequently inside the buffer
- Rejection sampling for samples outside the buffer.

Optimal Sample Allocation

Given that we want to apply stratified sampling to estimate the gradient of REINFORCE with baseline under 1/0 rewards. It can be shown that the optimal strategy is to allocate the **same number of samples** to **reward** vs **no reward** experiences

Image source: Guy Harris, 2018 How to Give Feedback in a Non-Threatening Way

Comparison of model update strategies NIPS [Liang+ 2018]

Memory Weight Clipping

• Policy gradient methods usually suffer from a cold start problem, because the model probabilities **P** to good experiences are very small initially

$$\nabla_{\theta} J^{RL}(\theta) = \sum_{q} \sum_{a_{0:T}} P(a_{0:T}|q,\theta) [R(q,a_{0:T}) - B(q)] \nabla_{\theta} \log P(a_{0:T}|q,\theta)$$

• We adopt a clipping mechanism to ensure that the buffer probability is larger than a threshold *a*

Sample
$$\mathbf{a}_i^+ \sim \pi_{\theta}^{old}$$
 over \mathcal{B}_i
 $w_i^+ \leftarrow \max(\pi_{\theta}^{old}(\mathcal{B}_i), \alpha)$
 $D \leftarrow D \cup (\mathbf{a}_i^+, R(\mathbf{a}_i^+), w_i^+)$

Memory Weight Clipping

Training becomes less biased over time

Comparison

- REINFORCE does not work at all
- MAPO is slower but less biased

[•] The shaded area represents the standard deviation of the dev accuracy

SOTA results with weak supervision

Model	E.S.	Dev.	Test
Pasupat & Liang (2015)[28]	-	37.0	37.1
Neelakantan et al. (2017)[26]	1	34.1	34.2
Neelakantan et al. (2017)[26]	15	37.5	37.7
Haug et al. (2017)[15]	1	-	34.8
Haug et al. (2017)[15]	15	-	38.7
Zhang et al. (2017)[51]	-	40.4	43.7
МАРО	1	42.7	43.8
MAPO (ensembled)	5	-	46.2

Table 3: Results on WIKITABLEQUESTIONS. E.S. is the number of ensembles (if applicable).

Model	Dev.	Test
Zhong et al. (2017)[52]*	60.8	59.4
Wang et al. (2017)[40]*	67.1	66.8
Xu et al. (2017)[46]*	69.8	68.0
Huang et al. (2018)[18]*	68.3	68.0
Yu et al. (2018)[48]*	74.5	73.5
Sun et al. (2018)[38]*	75.1	74.6
Dong & Lapata (2018)[12]*	79.0	78.5
MAPO	72.4	72.6
MAPO (ensemble of 5)	-	74.9

Table 4: Results on WIKISQL. *All other methods use question-program pairs as strong supervision, while MAPO only uses question-answer pairs as weak supervision.

Scale up: Distributed Actor-Learner architecture

[Liang et al, 2017; Espeholt et al, 2018; Liang et al, 2018]

• Weak Supervision NLP

- NLP, AI, software 2.0
- Semantics as a foreign language
- Unsupervised learning
- Knowledge representation (symbolism)

• Semantic Parsing Tasks

• WebQuestionsSP, WikiTableQuestions

• Neural Symbolic Machines (ACL 2017)

- Compositionality (short term memory)
- Scalable KB inference (symbolism)
- RL vs MLE

• *Memory Augmented Policy Optimization* (NIPS 2018)

- Experience replay (long term memory & optimal updating strategy)
- Systematic exploration
- Memory Weight Clipping (unbiased cold start strategy)

Access slides and join discussions at weakly-supervised-nlu google group

Mobile

Desktop

