Learning to Organize Knowledge with N-Gram Machines

Scalability & Intelligence

- "Methods that scale with computation are the future of Al" -- Richard Sutton, 2017
- **Hippocampus** studies (Wickman 2012; Bartol+ 2015) suggests that human memory capacity may be somewhere between 10 terabytes and 100 terabytes.
- Modern search engines (Brin & Page 1998) respond to users' requests within fraction of a second from large data, but are weak at understanding and reasoning.

Hippocampal Circuitry

- *Hippocampus* and *neocortex* are complementary systems -- rapid storage of experience vs gradually build semantic representations from accumulated data.
- *Episodic memory* can store and retrieve events through autoassociation -completing memory from partial cues, which enables efficient storage & retrieval.
- The recurrent structure in CA3 collateral system allows the generation process to be informed by external input to provide a fuller and more coherent version.
- Sharp-wave ripple (SWR) during sleep replays earlier experiences at x10 speed with goal-dependent weightings, and trains the neocortex.

End-to-end QA Models

• With vector space semantic representations the inference time is linear to text size. E.g., MemN2N (Sukhbaatar+ 2015)

Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

Fan Yang, Jiazhong Nie, William W. Cohen, Ni Lao Carnegie Mellon University & Google

{fanyang1,wcohen}@cs.cmu.edu, {niejiazhong,nlao}@google.com

NGM Framework Probabilistic Knowledge storage

Table 1: Example of probabilistic knowledge storage. Each sentence may be converted to a distribution over multiple tuples, but only the one with the highest probability is shown here.

Sentences	Knowledge tuples		
	Time stamp	Symbols	Probability
Mary went to the kitchen.	1	mary to kitchen	0.9
Mary picked up the milk.	2	mary the milk	0.4
John went to the bedroom.	3	john to bedroom	0.7
Mary journeyed to the garden.	4	mary to garden	0.8

• Programs

Table 2: Functions in N-Gram Machines. The knowledge storage on which the programs can execute is Γ , and a knowledge tuple Γ_i is represented as $(i, (\gamma_1, \ldots, \gamma_N))$. "FR" means from right.

Name	Inputs	Return
Нор	$v_1 \dots v_L$	$\{\gamma_{L+1} \mid \text{ if } (\gamma_1 \dots \gamma_L) =$
HopFR	$v_1 \dots v_L$	$\{\gamma_{N-L} \mid \text{ if } (\gamma_{N-L+1} \dots$
Argmax	$v_1 \dots v_L$	$\operatorname{argmax}_{i}\{(\gamma_{L+1}, i) \mid \text{ if } ($
ArgmaxFR	$v_1 \dots v_L$	$\operatorname{argmax}_{i}\{(\gamma_{N-L}, i) \mid \text{ if }$

• Seq2Seq models

Inference & optimization

- Beam search instead of MCMC to avoid variances
- To solve a hard search problem
- Stabilized auto-encoding (AE)
- Structure tweak (ST)
- Coordinate descent by REINFORCEs with replays

 s_{i-1} for co-references

 $P(\mathbf{\Gamma}|\mathbf{s};\theta_{enc}) = \prod_{\Gamma_i \in \mathbf{\Gamma}} P(\Gamma_i|s_i, s_{i-1};\theta_{enc})$

 $==(v_1,\ldots,v_L), \forall \Gamma \in \mathbf{\Gamma} \}$ $(\gamma_N) == (v_L, \ldots, v_1), \forall \Gamma \in \mathbf{\Gamma} \}$ $(\gamma_1 \dots \gamma_L) == (v_1, \dots, v_L), \forall \Gamma_i \in \mathbf{\Gamma} \}$ $(\gamma_{N-L+1}\ldots\gamma_N) == (v_L,\ldots,v_1), \forall \Gamma_i \in \mathbf{\Gamma} \}$

 $O^{\text{AE}}(\theta_{\text{enc}}, \theta_{\text{dec}}) = \mathbb{E}_{p(z|x;\theta_{\text{enc}})}[\log p(x|z;\theta_{\text{dec}})] + \sum \log p(x|z;\theta_{\text{dec}}),$ $z \in \mathbf{Z}^{N}(x)$ Z^N(x): all tuples of length N which only consist of words from x

Experiment Results

• Extractive bAbl tasks

Table 3: Test accuracy on bAbI tasks with auto-encoding (AE) and structure tweak (ST)

	Task 1	Task 2	Task 11	Task 15	Task 16
MemN2N	1.000	0.830	0.840	1.000	0.440
QA	0.007	0.027	0.000	0.000	0.098
QA + AE	0.709	0.551	1.000	0.246	1.000
QA + AE + ST	1.000	0.853	1.000	1.000	1.000

Auto-encoding and structural tweaking help to learn good representations.

QA	QA + AE	QA + AE + ST
went went went	daniel went office	daniel went office
mary mary mary	mary <u>back</u> garden	mary <u>went</u> garden
john john john	john <u>back</u> kitchen	john <u>went</u> kitchen
mary mary mary	mary <u>grabbed</u> football	mary <u>got</u> football
there there there	sandra got apple	sandra got apple
cats cats cats	<u>cats</u> afraid wolves	<u>cat</u> afraid wolves
mice mice mice	<u>mice</u> afraid wolves	<u>mouse</u> afraid wolves
is is cat	gertrude is cat	gertrude is cat

Table 6: Task 2 Two Supporting Facts

Story	Knowledge Storage
Sandra journeyed to the hallway. John journeyed to the bathroom. Sandra grabbed the football. Daniel travelled to the bedroom. John got the milk. John dropped the milk.	Sandra journeyed hallway John journeyed bathroom Sandra got football Daniel journeyed bedroom John got milk John got milk
Question	Program
Where is the milk?	ArgmaxFR milk got Argmax V1 journeyed

