Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision Chen Liang¹, Jonathan Berant², Quoc Le, Kenneth Forbus, Ni Lao

¹Work done while the author was interning at Google ²Work done while the author was a visiting scholar at Google

Neural Computer Interface

• A strong IDE / interpreter reduces the search space: exclude the invalid choices that will cause error

> Syntax check: Only a variable can follow 'Hop'

Semantic check: only relations that are connected to R1 can be used ~ 20k => ~ 100

Sampling v.s. Beam Search

- Programming is deterministic: closer to a maze than Atari game
- Uses beam search (final beam with normalized probabilities) to generate training examples

Iterative ML Training

- Optimize log likelihood of **approximate gold programs** $J^{ML}(\theta) = \sum \log P(a_{0:T}^{best}(q)|q,\theta)$
- Fast, but suboptimal
 - **Spurious programs**: wrong programs that happen to produce the correct answers, e.g., answering PlaceOfBirth with PlaceOfDeath
 - Lacking negative examples: hard to differentiate related relations, e.g., ParentOf, ChildrenOf, SiblingOf.
- Bootstrapping effect

Better

gold

approximate

programs

Research

at Google

NORTHWESTERN

UNIVERSITY

TEL AUIU

• Optimize the **expected F1** of generated programs

 $J^{RL}(\theta) = \sum \mathbb{E}_{P(a_0:T|q,\theta)}[R(q,a_{0:T})]$ $\nabla_{\theta} J^{RL}(\theta) = \sum \sum P(a_{0:T}|q,\theta) [R(q,a_{0:T}) - B(q)] \nabla_{\theta} \log P(a_{0:T}|q,\theta)$ $B(q) = \sum_{a_{0:T}} P(a_{0:T}|q,\theta) R(q, a_{0:T})$

- **Problem**: slow and stuck at local optima
- Augmentation: add approximate gold program into final beam with a reasonably large probability

Decoding

ML training

Implementation

Experiments & Analysis

- 200 decoders, 50 KB servers, 1 trainer, 251 machines in total
- Since the network is small, we didn't see much speedup from GPU

• New state-of-the-art without manual engineering

Better

model

Model	Avg. Prec.@1	Avg. Rec.@1	Avg. F1@1	Acc.@1	
STAGG	67.3	73.1	66.8	58.8	· _
NSM – our model	70.8	76.0	69.0	59.5	
STAGG (full supervision)	70.9	80.3	71.7	63.9	

f1_in_beam

0.850

0.750

0.650

0.550

• Comparison of iterative ML, REINFORCE and augmented REINFORCE

Settings	Train Avg. F1@1	Valid Avg. F1@1
iterative ML only	68.6	60.1
REINFORCE only	55.1	47.8
Augmented REINFORCE	83.0	67.2

- Curriculum learning in iterative ML training
 - First use only "Hop" and limit program length to 2
 - Then add other functions and limit program length to 3

Settings	Avg. Prec.@Best	Avg. Rec.@Best	Avg. F1@Best	Acc.@Best
No curriculum	79.1	91.1	78.5	67.2
Curriculum	88.6	96.1	89.5	79.8

• Techniques to reduce overfitting

Settings	Δ Avg. F1@1
-Pretrained word embeddings	-5.5
-Pretrained relation embeddings	-2.7
-Dropout on GRU input and output	-2.4
-Dropout on softmax	-1.1
-Anonymize entity tokens	-2.0