Efficient Random Walk Inference with Knowledge Bases

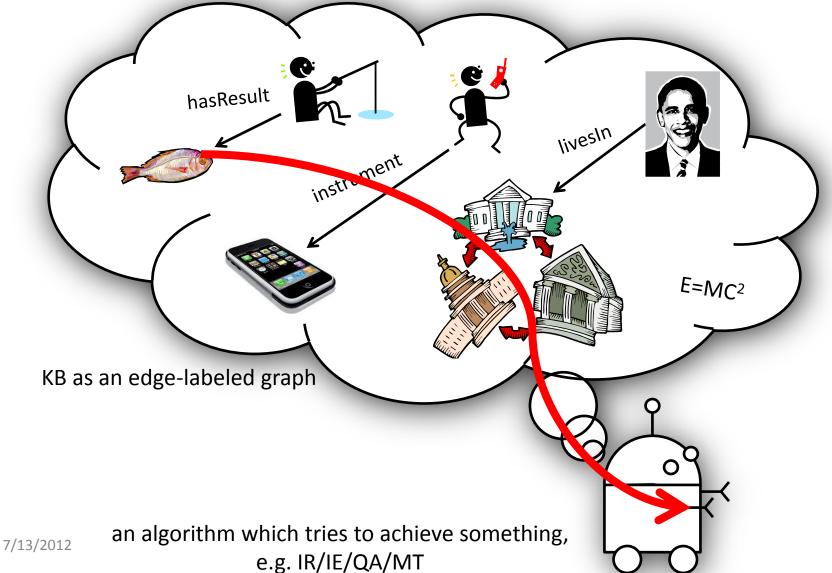
Ni Lao

Carnegie Mellon University

2012-7-11

Committee: William W. Cohen (Chair), Teruko Mitamura, Tom Mitchell,C. Lee Giles (Pennsylvania State University)

Knowledge itself is power. --Francis Bacon



Link Prediction

-- a generic relational learning task

Given

- a directed edge-labeled graph
- a relation type r
- a source node s (also called a query)

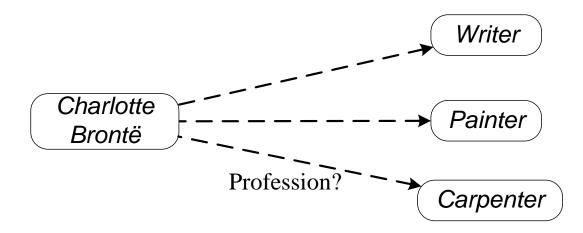
Find

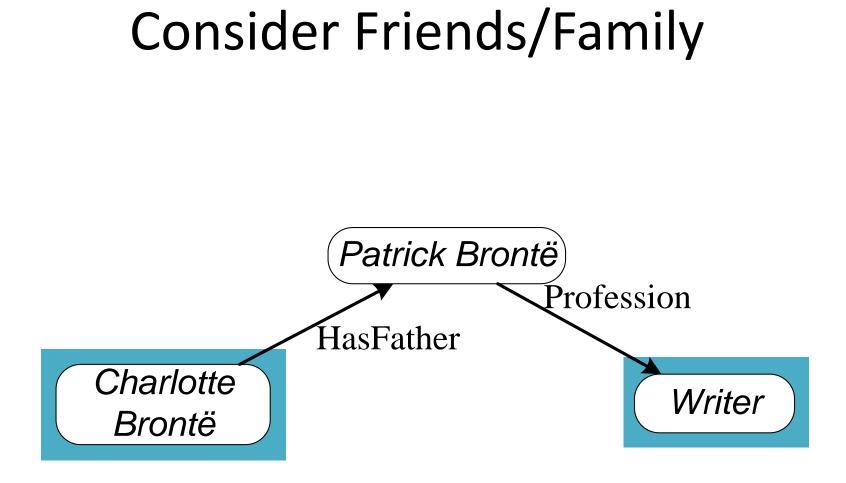
the set of nodes G, so that r(s,t) for each t in G

Application

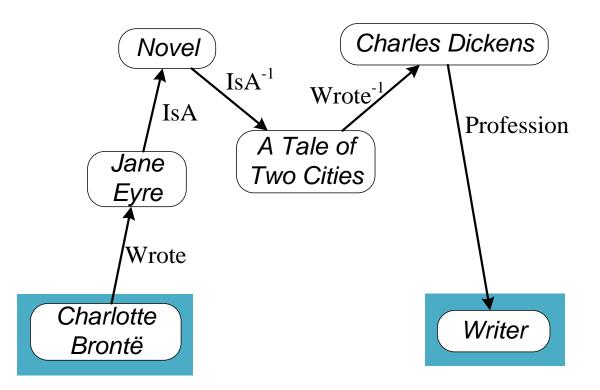
Infer New Knowledge

What is the profession of Charlotte Brontë?



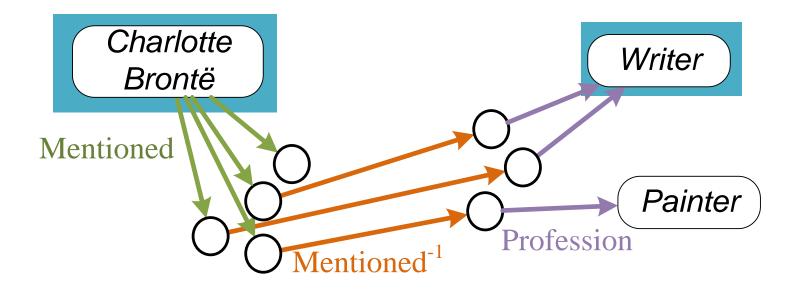


Consider Behaviors



IsA⁻¹ is the inverse of IsA Wrote⁻¹ is the inverse of Wrote

Consider Literatures/Publications

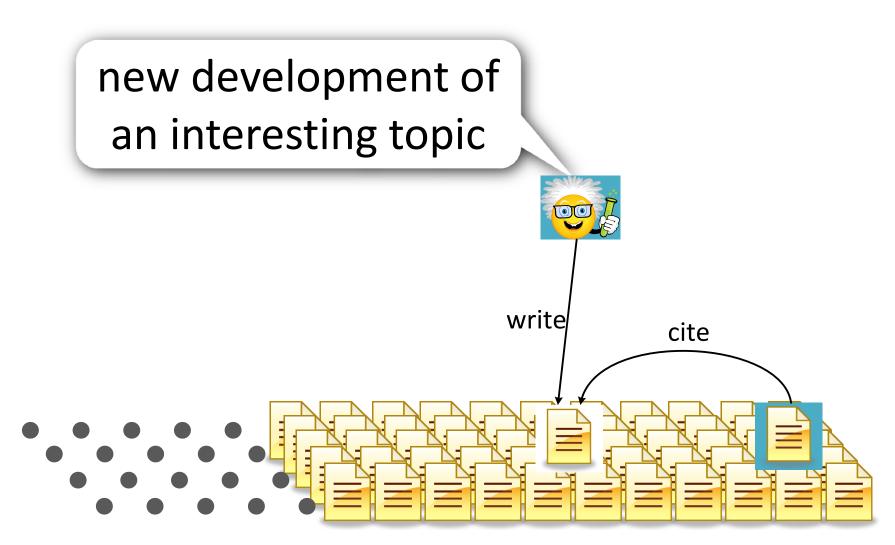


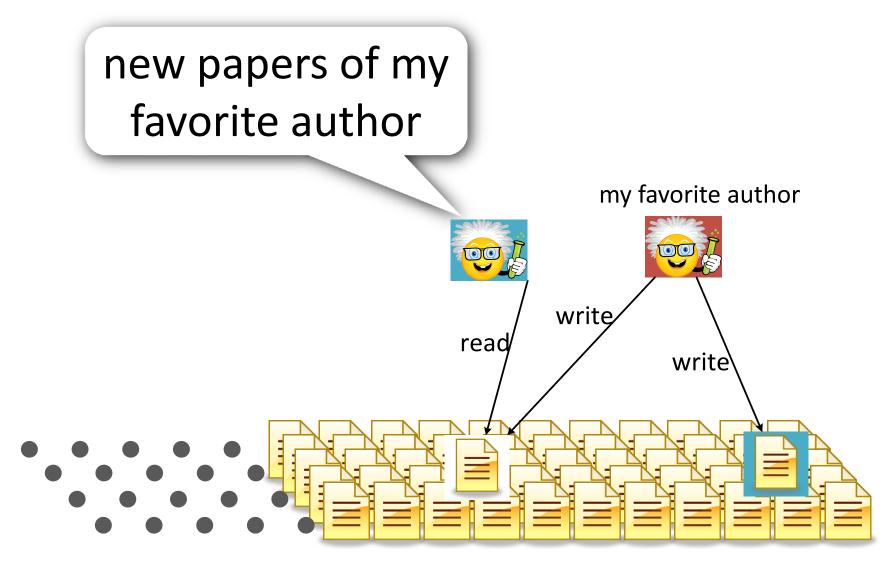
Application

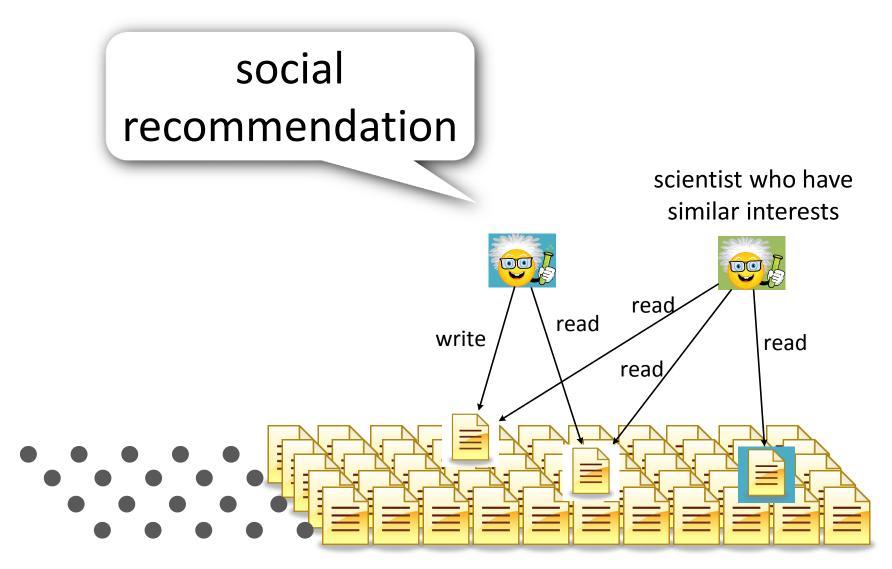
Reading Recommendation

these are interesting papers

a paper stream

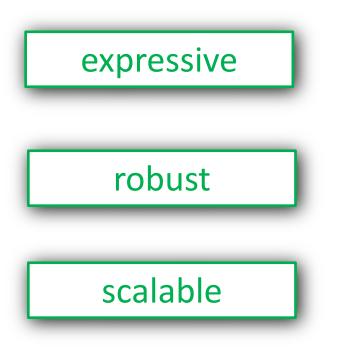






Relational learning is a subfield of artificial intelligence, that learns with expressive logical or relational representations.

Relational Learning Goals



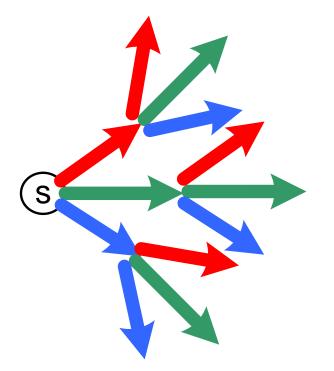
define features expressing sequences of relations on graph

combine many such features when making decisions

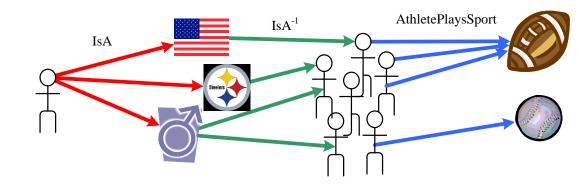
efficiently discover and calculate such features

Why is relational learning computationally challenging?

Exponentially many path types



Exponentially many path instantiations



Our solution: sampling

Our solution: feature metrics

Thesis Outline

	Algorithms	Applications
Ch. 2 : motivation	Ch. 2 : Path Ranking Algorithm (Lao & Cohen, MLJ 2010)	Ch. 3 : knowledge base inference (Lao+, EMNLP 2011)
		Ch. 4 : literature recommendation (Lao & Cohen, DILS 2012)
	Ch. 5 : efficient RW (Lao & Cohen, KDD 2010)	
	Ch. 6 : distributed computing	Ch. 6 : relation extraction from parsed text (Lao+, EMNLP 2012)
	Ch. 7 : more expressive features (submitted)	Ch. 7: coordinate term extraction
Ch. 8 : future work		

Outline **Motivation** Algorithms **Applications** the problem previous work

Inductive Logic Programming

e.g.

First Order Inductive Learner--FOIL (Quinlan, ECML'93)

High precision Horn clauses

HasFather(a,b) ^ Profession(b,y) \rightarrow Profession(a,y)

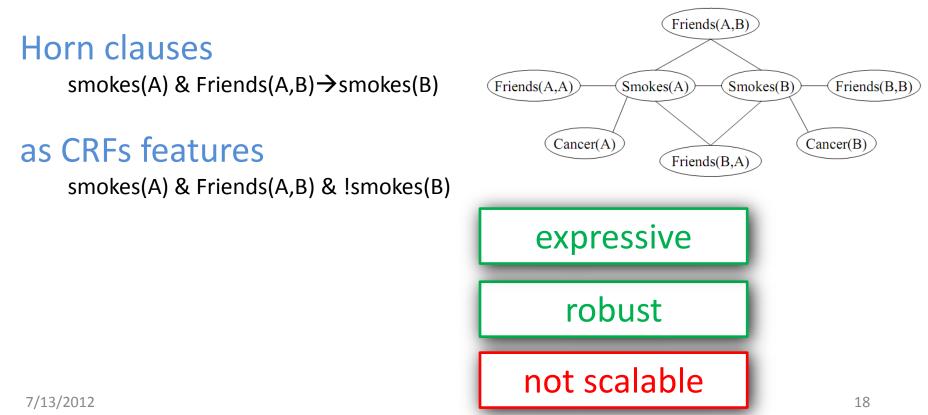
expressive		
not robust		
not scalable		

experimental comparison later

Undirected Graphical Models -- combine logics with GM

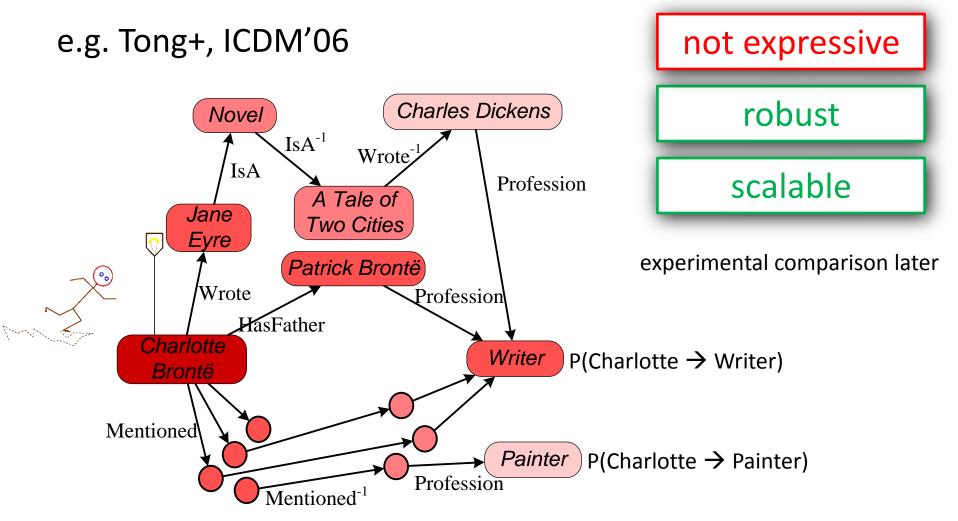
e.g.

Markov Logic Networks (Kok & Domingos, ICML'05) Relational CRFs (Lao+, NIPS'10)



Random Walk with Restart

-- ignore logic



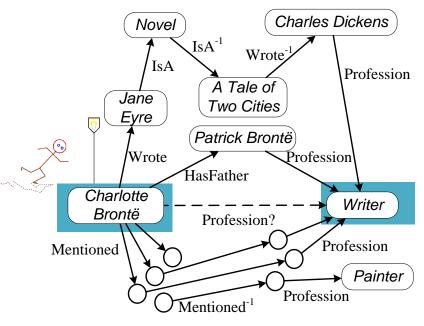
Outline **Motivation** Algorithms **Applications** the problem previous work idea

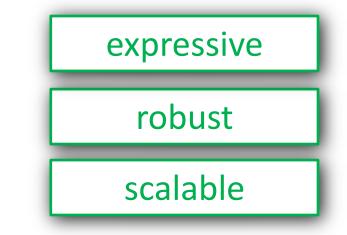
Relational Classification

-- combine logics with RWs

. . .

e.g. Path Ranking algorithm (Lao & Cohen, MLJ'10)





P(Charlotte → Writer; <HasFather,IsA>) P(Charlotte → Writer; <Mention,Mention⁻¹,IsA>)

P(*Charlotte* → *Painter*; <*HasFather*,*IsA*>) *P*(*Charlotte* → *Painter*; <*Mention*,*Mention*⁻¹,*IsA*>)

Contribution

Apply relational learning at scales not possible before

made possible by a family of easy-to-learn features fast random walk distributed computing

Outline **Motivation** Algorithms **Applications** Path Ranking the problem Algorithm (PRA) previous work idea contribution

Path Ranking Algorithm (PRA)

(Lao & Cohen, MLJ 2010)

$$score(s,t) = \sum_{\pi \in B} P(s \to t;\pi) \theta_{\pi}$$
a weight

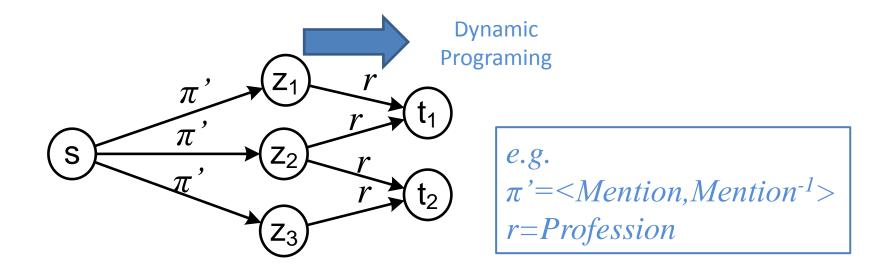
e.g. $\pi = <$ *Mention,Mention*⁻¹,*IsA*>

expressive

robust

Random Walk Calculation

$$score(s,t) = \sum_{\pi \in B} P(s \to t;\pi) \theta_{\pi}$$



$$P(s \to t; \pi) = \sum P(s \to z; \pi') P(z \to t; r)$$

 \mathcal{Z}

scalable

later about how to do it x100 more efficiently using sampling

Feature Selection with Labeled Data

$$score(s,t) = \sum_{\pi \in B} P(s \to t;\pi) \theta_{\pi}$$

given training query set $\{(s_i, G_i)\}$

$$hits(f) = \sum_{i} I\left[\sum_{j \in G_{i}} f(s_{i}, t_{j})\right] \ge h$$
$$accuracy(f) = \frac{1}{N} \sum_{i} \left[\frac{\sum_{j \in G_{i}} f(s_{i}, t_{j})}{\sum_{j} f(s_{i}, t_{j})}\right] \ge a$$

I(): the indicator function N: total number of queries

Estimating
$$\theta$$

score(s,t) = $\sum_{\pi \in B} P(s \to t; \pi) \theta_{\pi}$

for a relation r

generate positive and negative node pairs $\{(s_i, t_i)\}$

for each (s_i, t_i) generate (x_i, y_i) x_i is a vector of RW features of different paths π y_i is a binary label $r(s_i, t_i)$

estimate θ by L1/L2 regularized (elastic-net) logistic regression

Outline **Motivation** Algorithms **Applications** Path Ranking knowledge base the problem Algorithm (PRA) inference previous work idea contribution

Application

Knowledge Base Inference

(Lao, Mitchell, Cohen, EMNLP 2010)

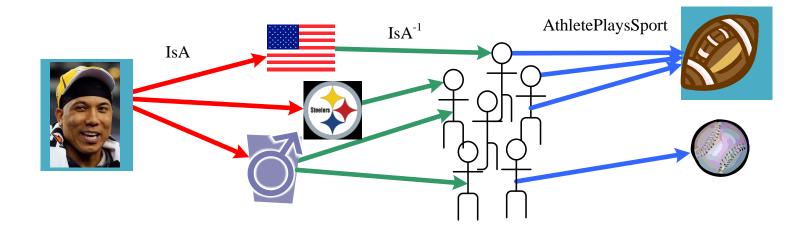
Example NELL relations

TARGET RELATION	N_Q
athletePlaysForTeam	498
athletePlaysInLeague	892
athletePlaysSport	1119
${ m stadiumLocatedInCity}$	254
teamHomeStadium	186
teamPlaysInCity	135
teamPlaysInLeague	341
teamPlaysSport	339
teamMember	142
${\rm companies} {\rm Head} { m quartered} { m In}$	393
publicationJournalist	68
producedBy	134
competesWith	226
hasOfficeInCity	398
teamWonTrophy	149
worksFor	363

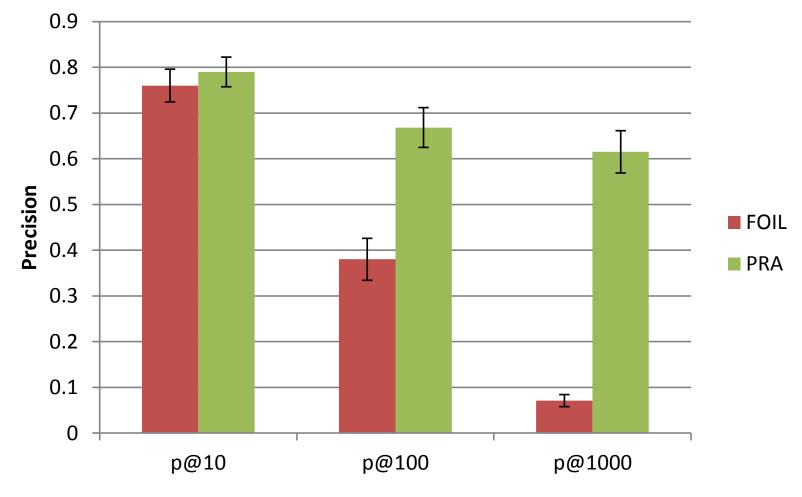
NELL (Never Ending Language Learner) v165 353 relations 0.7M nodes (concepts) 1.7M edges

PRA Uses Broad Coverage Features

AthletePlaysSport(HinesWard, ?)



PRA Has Much Higher Recall and Is Much Faster



Mechanical Turk evaluate new beliefs of 8 functional relations

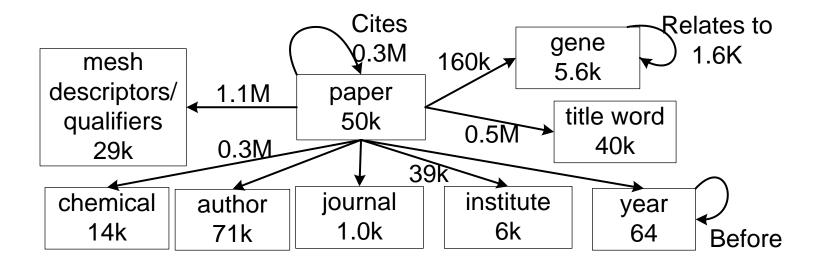
PRA trains in an hour vs. FOIL trains in a few days

Outline **Motivation** Algorithms **Applications** knowledge base Path Ranking the problem Algorithm (PRA) inference literature previous work recommendation idea contribution

Application Biology Literatures

Databases

- Yeast: 0.8M nodes, 3.5M edges
- Fly: 0.7M nodes, 16.9M edges

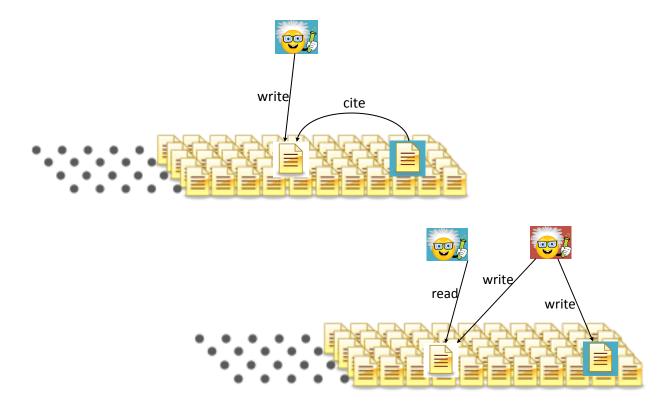


Recommendation Tasks

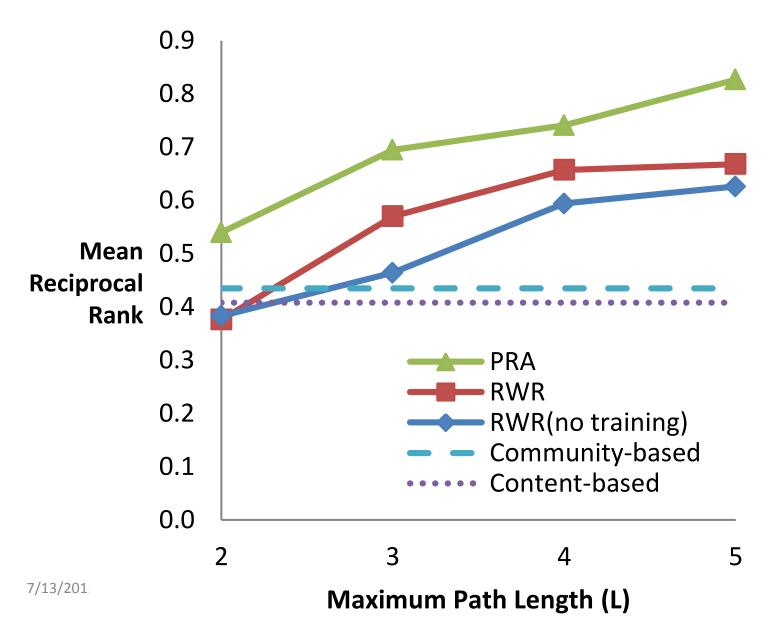
Literature Recommendation year, author → papers a user is going to read training data --- 1 user over 20 years

(collected from Dr. John Woolford's computer)

PRA Combines Dozens of Recommendation Strategies



Reading Recommendation

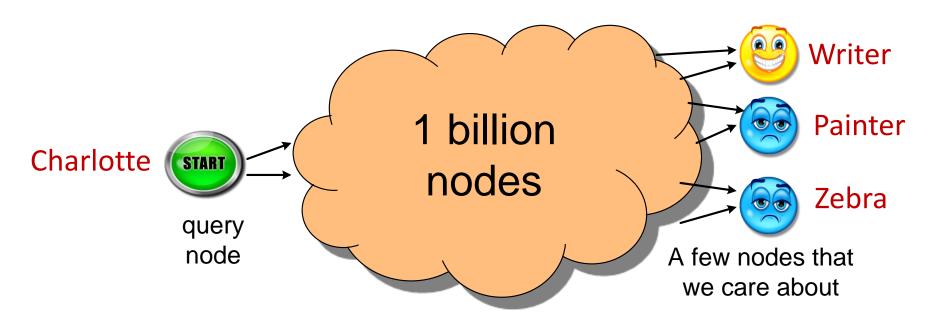


36

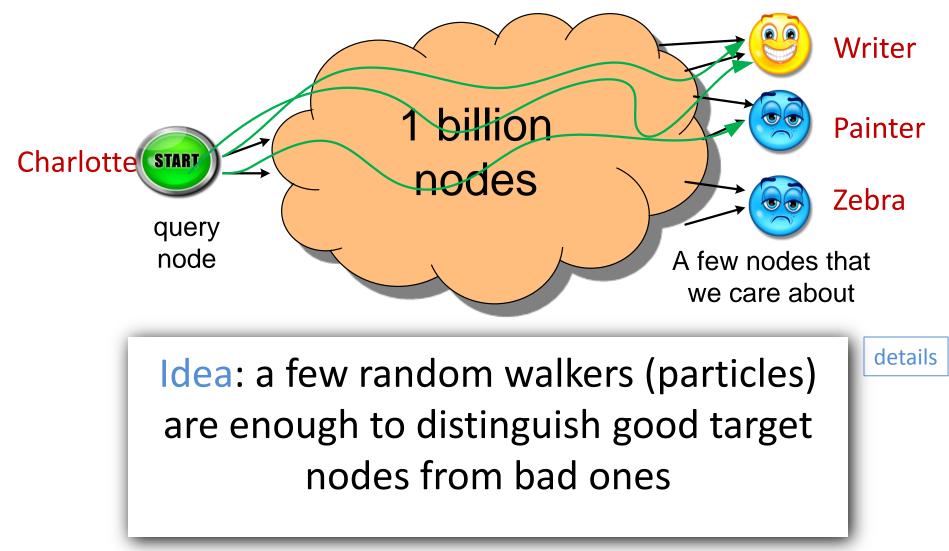
Outline **Motivation** Algorithms **Applications** knowledge base Path Ranking the problem Algorithm (PRA) inference literature previous work recommendation idea efficient RW contribution

Efficient Random Walks

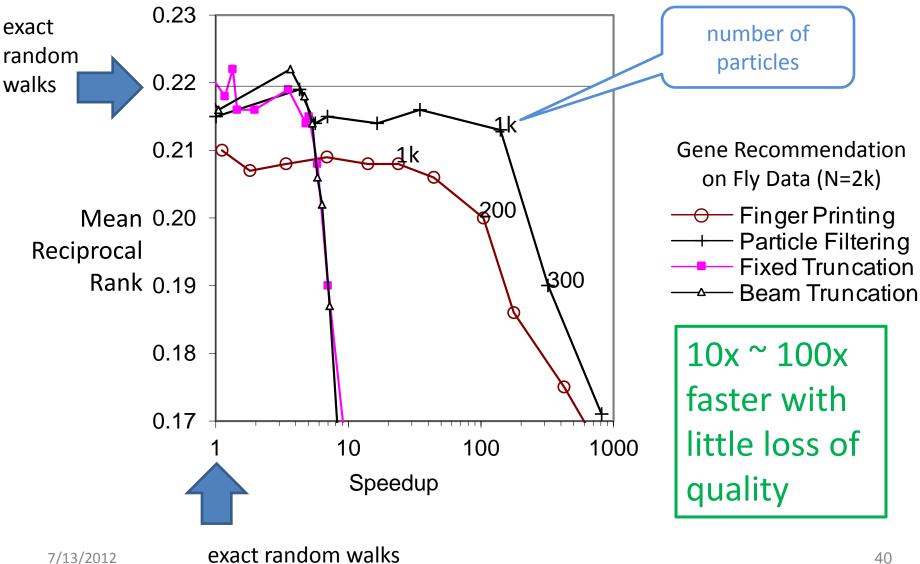
(Lao & Cohen, KDD 2010)



Exact calculation of random walks results in non-zero probabilities for many internal nodes



Compare Speedup Approaches

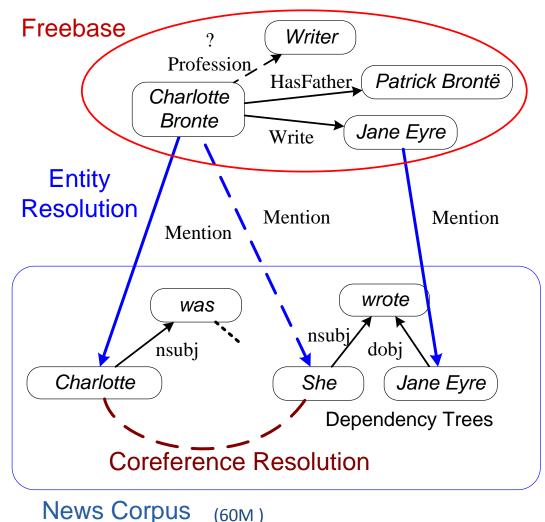


Outline **Motivation** Algorithms **Applications** knowledge base Path Ranking the problem Algorithm (PRA) inference literature previous work recommendation idea efficient RW distributed relation extraction contribution from parsed text computing

Application

Relation Extraction

(21M concepts, 70M edges)



Can PRA learn syntactic-semantic rules?

Distributed Computing

Large number of queries

e.g. 0.3M/2M persons have known profession Solution: map/reduce to explore path, generate training samples, calculate gradient, and do predictions for each query

Large text graph

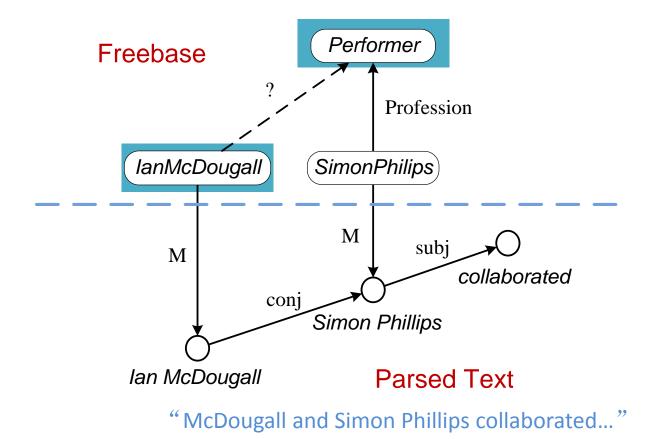
e.g. 60M documents

Solution: each node keeps the Freebase graph in memory

relevant sentences are loaded/unloaded for each query

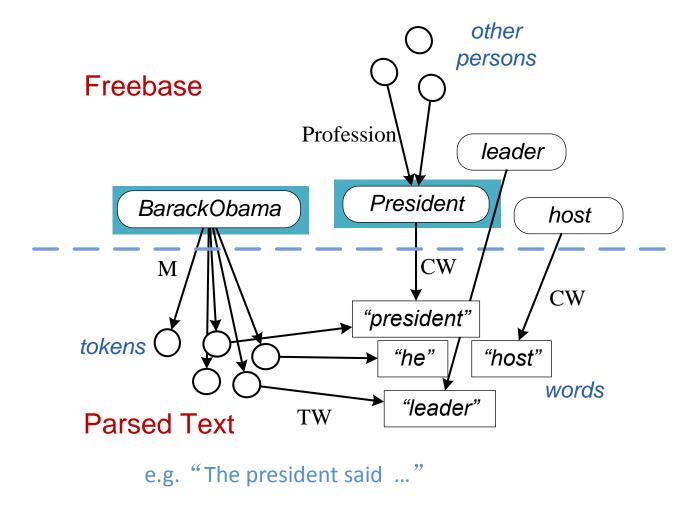
Combine Syntax with Semantics

<M, conj, M⁻¹, Profession>



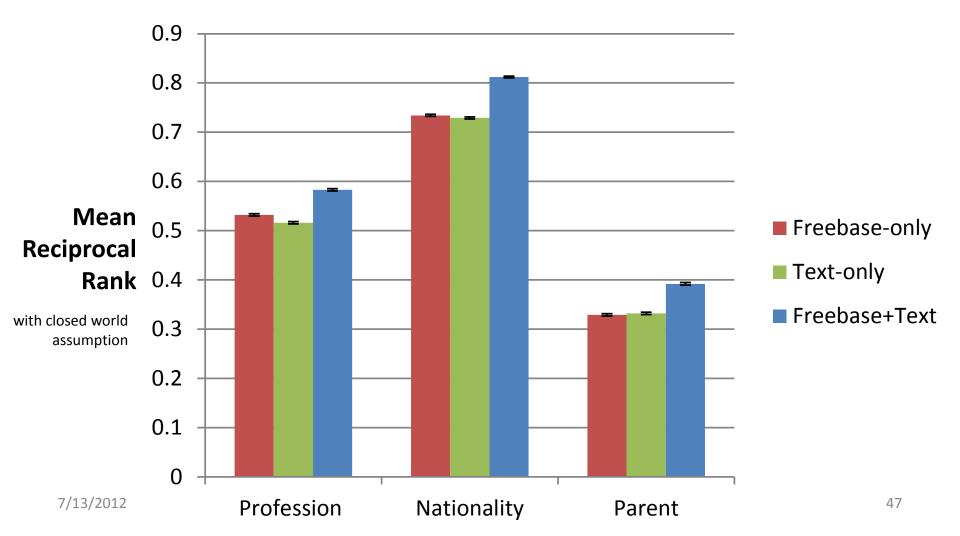
Combine Text with Semantics

<M, WORD, CW⁻¹, profession⁻¹, profession>

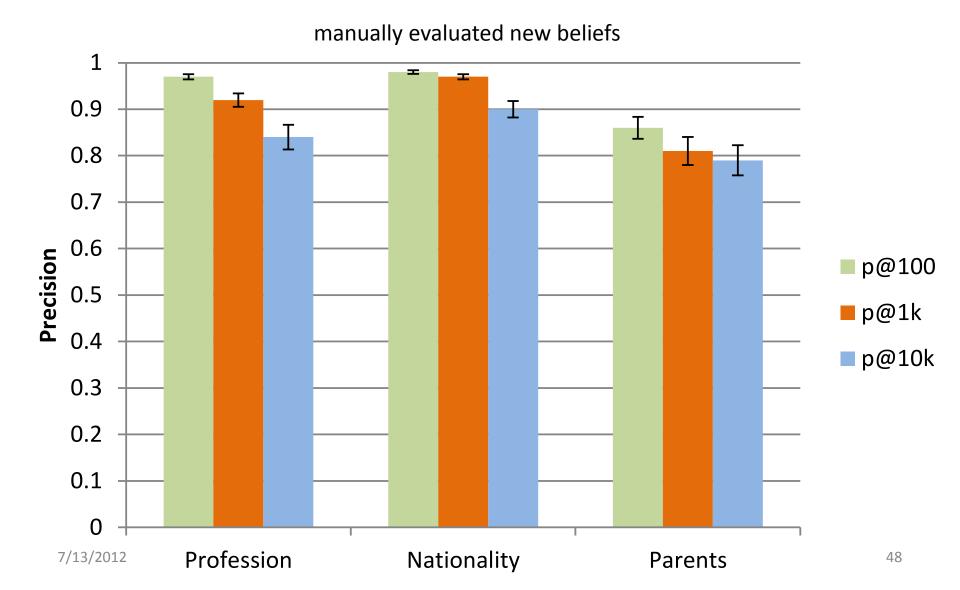


Text and KB Work Better Together

Tested by existing knowledge in Freebase



Highly Accurate New Beliefs

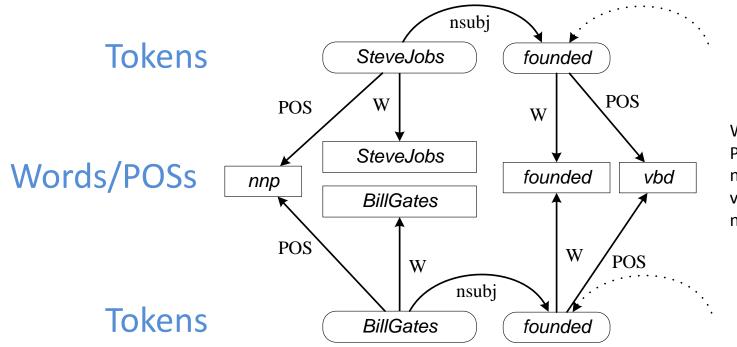


Outline **Motivation** Algorithms **Applications** knowledge base Path Ranking the problem Algorithm (PRA) inference literature previous work recommendation idea efficient RW distributed relation extraction contribution from parsed text computing more expressive coordinate term features extraction

Application

Coordinate Term Extraction Task

(Minkov & Cohen, ECML 2010)

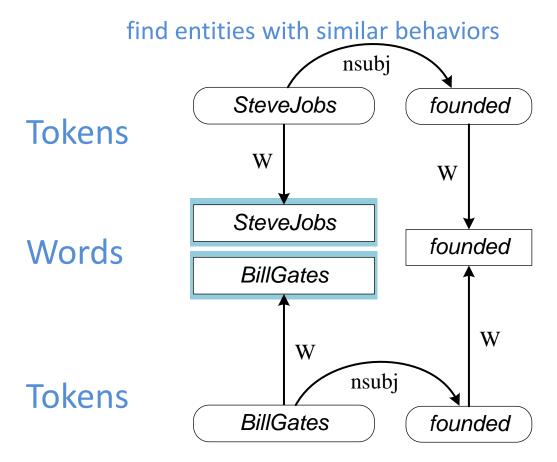


W: word POS: part of speech nnp: singular proper nouns vbd: verb, past tense nsubj: subject of a verb

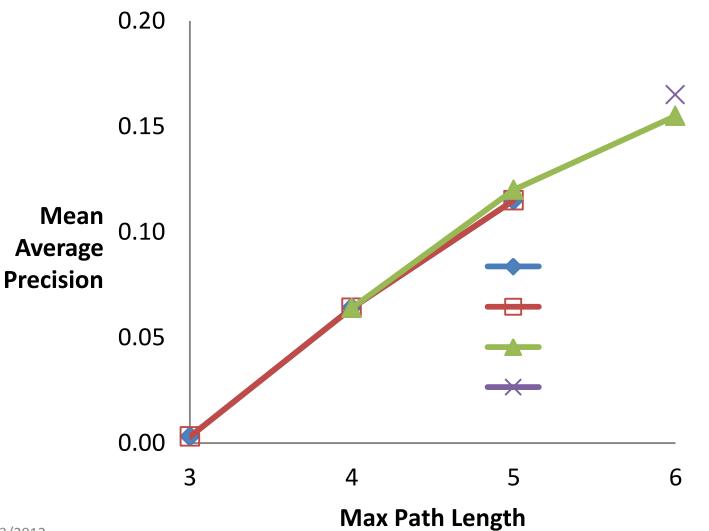
parsed MUC-6 corpus 153k nodes, 748K edges 30 queries given 4 person names as seeds, find other persons

Good Paths Are Quite Long

<W⁻¹,nsubj,W,W⁻¹,nsubj⁻¹,W>

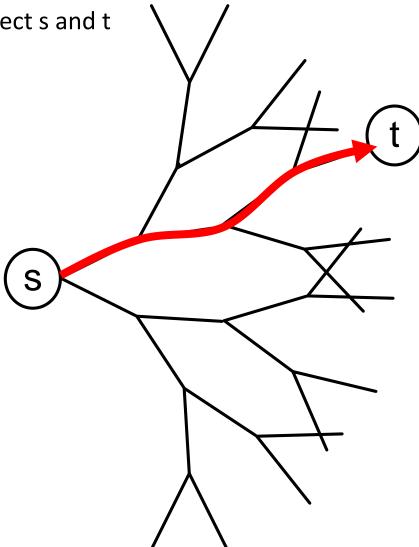


Good Paths Are Quite Long

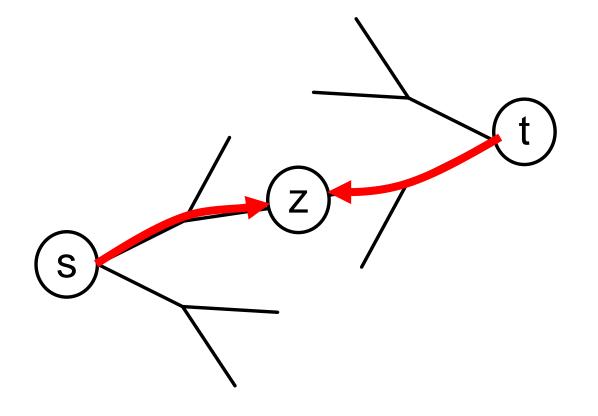


Forward Search Is Wasteful

Find paths that connect s and t



Bidirectional Search Is More Efficient



challenge is to calculate $P(s \rightarrow t; \pi)$

Forward vs. Backward RWs

Forward

Backward

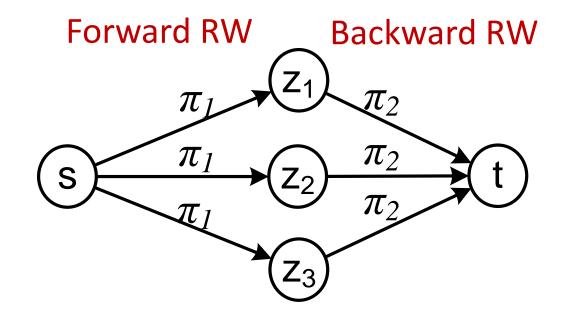
$$P(t \leftarrow s; \pi) = \sum P(t \leftarrow z; \pi') P(z \leftarrow s; r)$$

Z.

evaluate
$$P(s \rightarrow t; \pi)$$

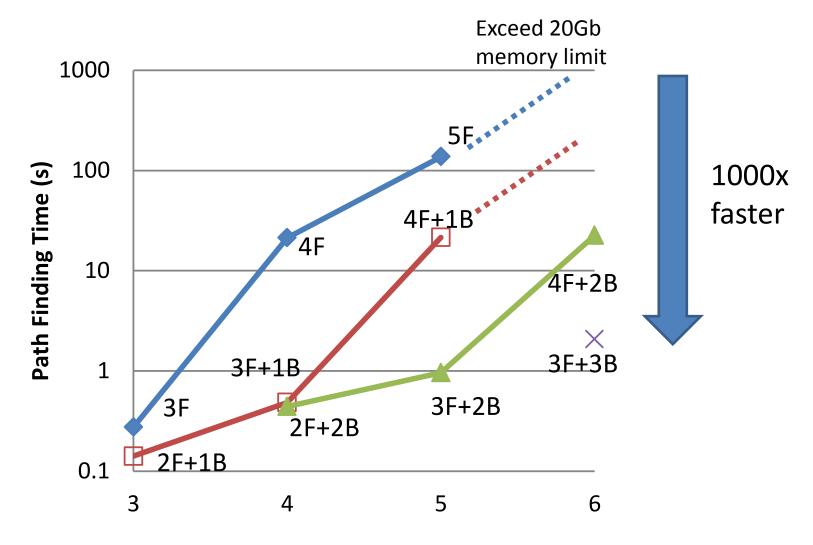
for many s

Bidirectional Search with RW



$$P(s \to t; \pi_1 \pi_2) = \sum_z P(s \to z; \pi_1) P(t \leftarrow z; \pi_2)$$

Bidirectional Search Is Much Faster

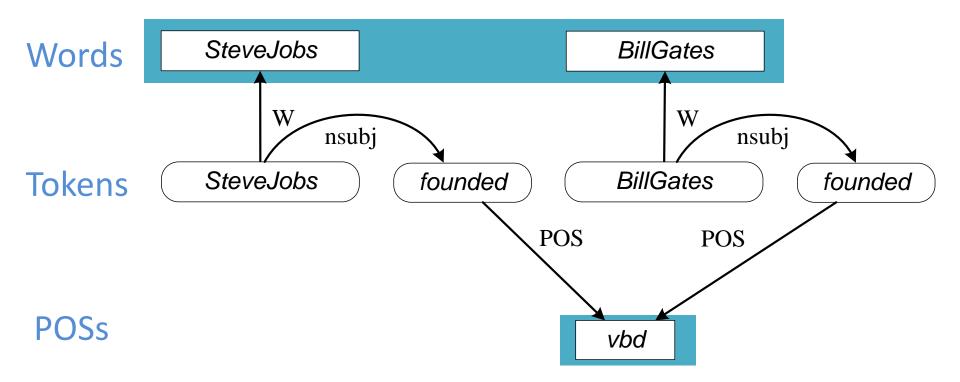


Max Path Length

Need for Lexicalized Paths

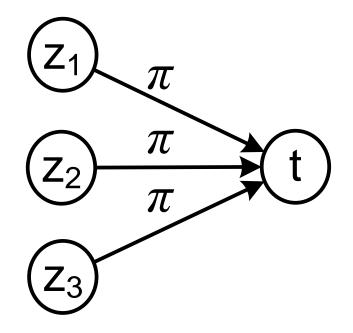
Task: find person entities

P(vbd→t | <POS⁻¹, nsubj⁻¹, W>)



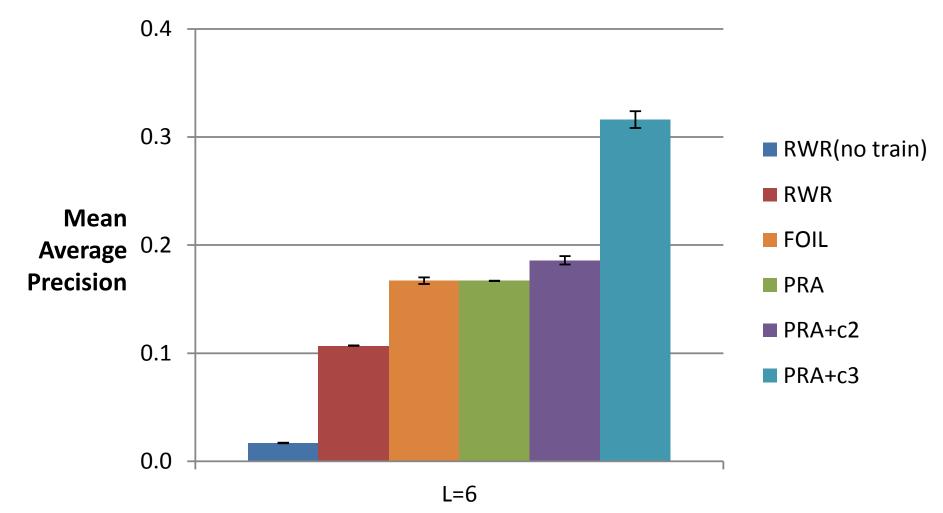
Evaluate Lexicalized Paths

Given an example (s_i, t_i) calculate $P(z \rightarrow t_i; \pi)$ for many z



Person Name Extraction

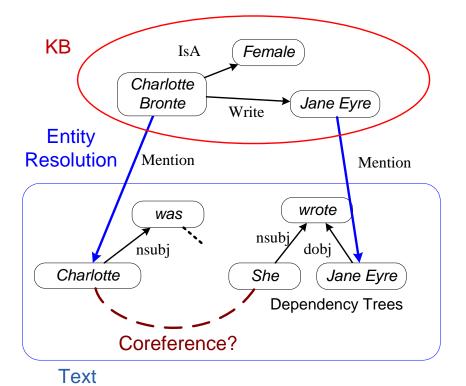
~1000 correct answers



Outline **Motivation** Algorithms **Applications** knowledge base Path Ranking the problem Algorithm (PRA) inference literature previous work recommendation idea efficient RW distributed relation extraction contribution from parsed text computing more expressive coordinate term features extraction

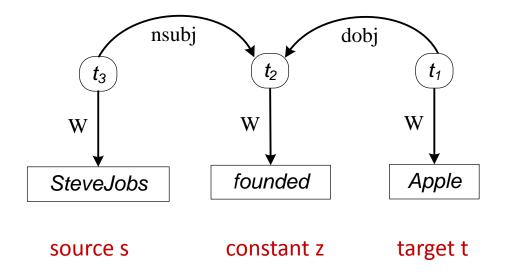
Apply knowledge to NLP/IE/IR/CV tasks

arg max P(decision | context, KB)



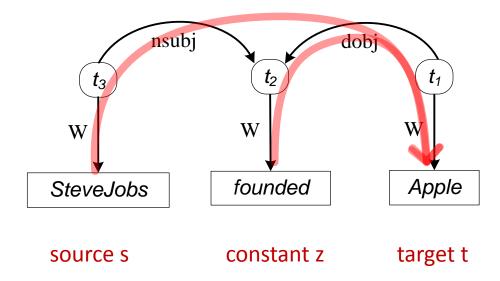
7/13/2012

- **Conjunctions of Paths**
 - rules can have tree structures
 - with source/constant/target nodes as leafs



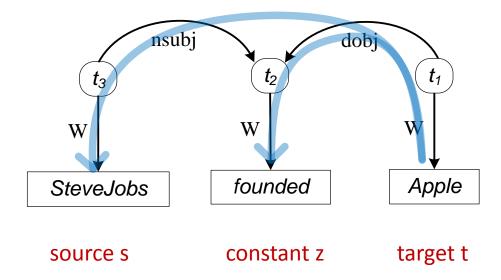
Conjunctions of Paths

forward PCRW with multiple walkers



Conjunctions of Paths

backward PCRW with multiple walkers



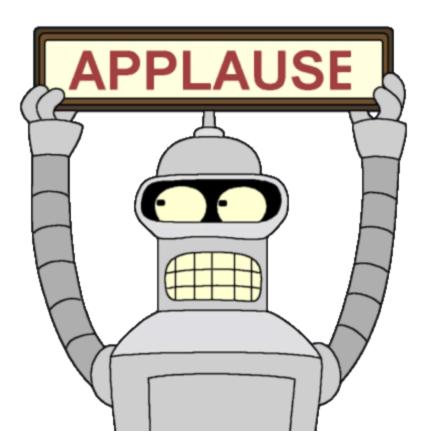
Contribution

Apply relational learning at scales not possible before. Leads to new applications!

Made possible by a family of easy-to-learn features (3 types) fast random walk (sampling) distributed computing

other work I did at CMU

Relational CRFs (Lao+, NIPS'10) Question answering (Lao+, NTCIR'08) Utility based retrieval evaluation (Yang+, SIGIR'07)



KB extension

new relation types, new concepts

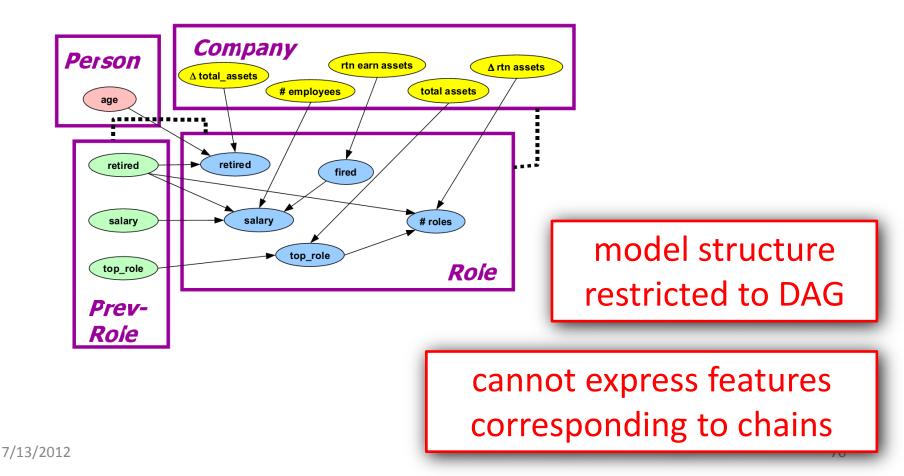
Unsupervised $\arg \max P(corpus | KB + \Delta KB)$ ΔKB

Supervised arg max $P(decisions \mid contexts, KB + \Delta KB)$ ΔKB

Directed Graphical Models

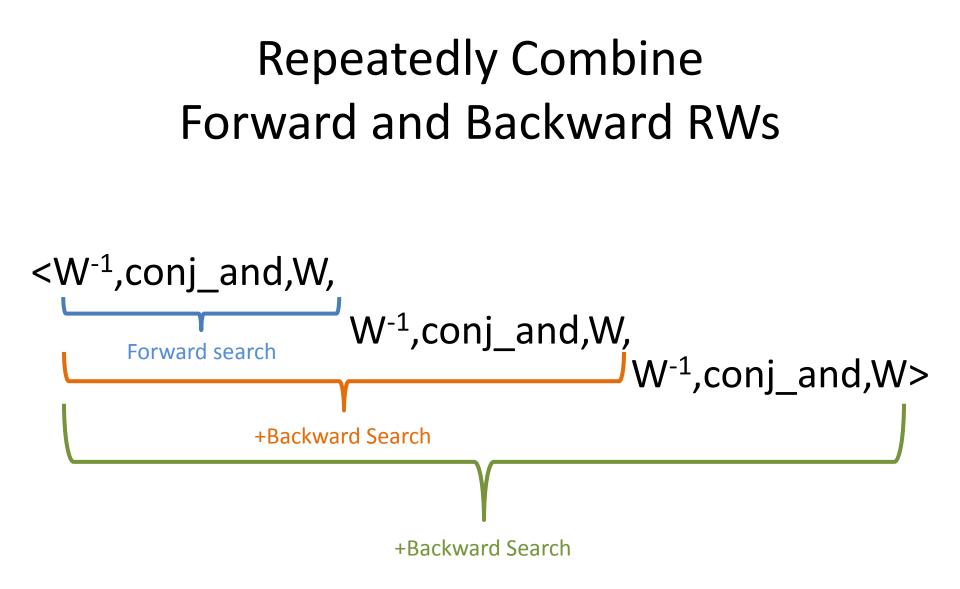
e.g.

Probabilistic Relational Models (Getoor+, ICML'01)



Coverage of top k triples

Profession Triples	Unique Persons
1k	970
10k	8,726
100k	79,885



Summary of PRA

Stage	Computation
Path Discovery	given {(s _i , G _i)}, find {f ; acc(f)>=a, hits(f)>=h}
Generate Training Samples	generate {(s _i , t _i)} and {(x _i , y _i)}
Logistic Regression Training	$\theta = \arg \max_{\theta} \left[\sum_{i} l_{i}(\theta) - \lambda_{1} \ \theta \ _{1} - \lambda_{2} \ \theta \ _{2}^{2} \right]$
Prediction	apply model to nodes <i>s</i> in <i>domain</i> (<i>r</i>)

Need for Lexicalized Paths

Task=AthletePlaysInLeague

 $P(mlb \rightarrow t; \phi)$ Bias toward MLB

$$P\left(BostonBraves \rightarrow t; \left\langle \begin{array}{c} AthletePlaysForTeam^{-1}, \\ AthletePlaysInLeagure \end{array} \right\rangle \right)$$

A prior over the leagues participated by Boston Braves university athletes

Need for Lexicalized Paths

Task=CompetesWith

$$P(google \to t; \phi)$$

Bias toward Google

 $P(Google \rightarrow t; \langle CompetesWith, CompetesWith \rangle)$

Companies around Google

Knowledge Base Inference

16 tasks

