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Knowledge itself is power. 
--Francis Bacon 
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an algorithm which tries to achieve something,  

e.g. IR/IE/QA/MT 

KB as an edge-labeled graph 



Link Prediction 
-- a generic relational learning task 

Given  

a directed edge-labeled graph  

a relation type r 

a source node s (also called a query) 

 

Find  

the set of nodes G, so that r(s,t) for each t in G 
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Infer New Knowledge 
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Application 

Charlotte 

Brontë
Painter

Writer

Profession?
Carpenter

What is the profession of Charlotte Brontë? 



Consider Friends/Family 
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Charlotte 

Brontë

Patrick Brontë

HasFather

Writer

Profession



Consider Behaviors 
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IsA-1 is the inverse of IsA 
Wrote-1 is the inverse of Wrote 

Charlotte 

Brontë
Writer

Jane 

Eyre

Wrote

Novel

A Tale of 

Two Cities 

IsA-1

IsA

Charles Dickens

Profession

Wrote-1



Consider Literatures/Publications 
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Mentioned

Charlotte 

Brontë
Writer

Mentioned-1

Painter

Profession



Reading Recommendation 
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a paper stream 

these are 
interesting papers 

Application 
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a paper river 
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a paper river 

new development of 
an interesting topic 

citewrite
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a paper river 

new papers of my 
favorite author 

read
write

write

my favorite author 
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a paper river 

social 
recommendation 

scientist who have 
similar interests 

read

read
readwrite

read



Relational Learning Goals 
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robust 

scalable 

expressive 
define features expressing  

sequences of relations on graph 

combine many such features  
when making decisions 

efficiently discover and  
calculate such features 

Relational learning is a subfield of artificial intelligence,  
that learns with expressive logical or relational representations. 



Why is relational learning 
computationally challenging? 
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Exponentially many path types 

IsA
IsA-1 AthletePlaysSport

Exponentially many path instantiations 

s

Our solution: feature metrics 

Our solution: sampling 



Thesis Outline 

15 

Ch. 2: 
motivation 

Ch. 3: knowledge base inference 
(Lao+, EMNLP 2011) 

Ch. 4: literature recommendation 
(Lao & Cohen, DILS 2012) 

Ch. 6: relation extraction from 
parsed text (Lao+, EMNLP 2012) 

Applications 

Ch. 7: coordinate term extraction 
 

Ch. 2: Path Ranking Algorithm 
(Lao & Cohen, MLJ 2010) 

Ch. 5: efficient RW 
(Lao & Cohen, KDD 2010) 

Ch. 6: distributed computing 
 

Algorithms 

Ch. 7: more expressive features 
(submitted) 

Ch. 8: 
future work 
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distributed 
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Inductive Logic Programming 

e.g.  

First Order Inductive Learner--FOIL (Quinlan, ECML’93) 
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HasFather(a,b) ^ Profession(b,y)  Profession(a,y) 

not robust 

High precision Horn clauses 

not scalable 

experimental comparison later 

expressive 



Undirected Graphical Models 
-- combine logics with GM 

e.g.  
Markov Logic Networks  (Kok & Domingos, ICML’05) 
Relational CRFs (Lao+, NIPS’10) 
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Horn clauses 
smokes(A) & Friends(A,B)smokes(B) 
 

as CRFs features 
smokes(A) & Friends(A,B) & !smokes(B) 
 

robust 

not scalable 

expressive 



Random Walk with Restart 
-- ignore logic  

19 

P(Charlotte  Writer) 

P(Charlotte  Painter) 

7/13/2012 

e.g. Tong+, ICDM’06 

experimental comparison later 

robust 

not expressive 

scalable 

Mentioned

Charlotte 

Brontë

Patrick Brontë

HasFather

Writer

Profession

Mentioned-1

Jane 

Eyre

Wrote

Novel

A Tale of 

Two Cities 

IsA-1

IsA

Charles Dickens

Profession

Wrote-1

Painter
Profession
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Relational Classification 
-- combine logics with RWs 
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e.g. Path Ranking algorithm (Lao & Cohen, MLJ’10) 

7/13/2012 

P(Charlotte  Writer; <HasFather,IsA>) 

P(Charlotte  Writer; <Mention,Mention-1,IsA>) 

… 

P(Charlotte  Painter; <HasFather,IsA>) 

P(Charlotte  Painter; <Mention,Mention-1,IsA>) 

… 

Mentioned

Profession?

Charlotte 

Brontë

Patrick Brontë

HasFather

Writer

Profession

Mentioned-1

Profession

Jane 

Eyre

Wrote

Novel

A Tale of 

Two Cities 

IsA-1

IsA

Charles Dickens

Profession

Wrote-1

Painter

Profession

robust 

scalable 

expressive 



Contribution 
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made possible by 

a family of easy-to-learn features 

fast random walk 

distributed computing 

Apply relational learning  

at scales not possible before 
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Path Ranking Algorithm (PRA) 
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(Lao & Cohen, MLJ 2010) 
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( , ) ( ; )
B

score s t P s t 



 


 

e.g. π=<Mention,Mention-1,IsA> 

robust 

expressive 

a weight 



( , ) ( ; )
B

score s t P s t 



 


 

Random Walk Calculation 
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e.g. 

π’=<Mention,Mention-1> 

r=Profession 

( ; ) ( ; ') ( ; )
z

P s t P s z P z t r    

Dynamic 
Programing 

π’

π’

π’

z3

s z2

z1

t2

t1

r
r

r
r

later about how to do it x100 
more efficiently using sampling scalable 
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B

score s t P s t 



 


 

Feature Selection with Labeled Data 

given training query set {(si, Gi)} 
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 
 
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  






I():  the indicator function 
N: total number of queries 



( , ) ( ; )
B

score s t P s t 



 


 

Estimating θ 

for a relation r  

generate positive and negative node pairs {(si, ti)} 

 

for each (si, ti) generate (xi, yi)  

xi is a vector of RW features of different paths π 

yi is a binary label r(si, ti) 

 

estimate θ by L1/L2 regularized (elastic-net) logistic regression 
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Knowledge Base Inference 

NELL (Never Ending 
Language Learner) v165 

353 relations 

0.7M nodes (concepts) 

1.7M edges  
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(Lao, Mitchell, Cohen, EMNLP 2010) 

Example NELL relations 

Application 



IsA
IsA-1 AthletePlaysSport
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PRA Uses Broad Coverage Features 

AthletePlaysSport(HinesWard, ?) 
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PRA Has Much Higher Recall  
and Is Much Faster 
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Mechanical Turk evaluate new beliefs of 8 functional relations 

PRA trains in an hour vs. FOIL trains in a few days 
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Biology Literatures 

Databases 

Yeast:  0.8M nodes, 3.5M edges 

Fly:  0.7M nodes, 16.9M edges 
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Application 

7/13/2012 

author

71k 

paper

50k

gene

5.6k 160k 

Relates to

1.6K 

Cites 

0.3M

year

64 Before

title word

40k 
0.5M

journal

1.0k 

institute

6k 

39k

mesh

descriptors/

qualifiers 

29k 

1.1M

chemical

14k 

0.3M 



Recommendation Tasks 

Literature Recommendation 
year, author  papers a user is going to read 

training data --- 1 user over 20 years 

34 

(collected from Dr. John 
Woolford’s computer) 

7/13/2012 



PRA Combines Dozens of 
Recommendation Strategies 
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citewrite

read
write

write
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Efficient Random Walks 

Exact calculation of random walks results in 
non-zero probabilities for many internal nodes 

38 

(Lao & Cohen, KDD 2010) 

1 billion 

nodes
query 

node A few nodes that 

we care about

Charlotte 

Writer 

Painter 

Zebra 

7/13/2012 



Idea: a few random walkers (particles) 
are enough to distinguish good target 

nodes from bad ones 

39 

1 billion 

nodes
query 

node A few nodes that 

we care about

Writer 

Painter 

Zebra 
Charlotte 

7/13/2012 

details 
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Compare Speedup Approaches 
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10x ~ 100x 
faster with 
little loss of 
quality 

exact 
random 
walks 

exact random walks 

Gene Recommendation 
on Fly Data (N=2k) 

Mean 
Reciprocal 

Rank 

number of 
particles 
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Relation Extraction 
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wrote

She

Mention

dobj

Charlotte

was

nsubj
nsubj

Jane Eyre

Charlotte

Bronte

Mention

Jane Eyre

Mention

Coreference Resolution

Entity 

Resolution

Freebase

News Corpus

Dependency Trees

Write

Patrick BrontëHasFather

?

Profession

Writer

(21M concepts, 70M edges) 

(60M ) 

Application 
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Can PRA scale? 

Can PRA learn syntactic-semantic rules? 



Distributed Computing 
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Large number of queries 
e.g. 0.3M/2M persons have known profession 
Solution: map/reduce to explore path, generate training 
samples, calculate gradient, and do predictions  for each 
query 
 

Large text graph 
e.g. 60M documents 
Solution: each node keeps the Freebase graph in memory  
relevant sentences are loaded/unloaded for each query   



<M, conj,  M-1, Profession> 
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Combine Syntax with Semantics 

“McDougall and Simon Phillips collaborated…” 

M

Profession

IanMcDougall

?

M

conj

Performer

SimonPhilips

subj

Freebase

Parsed TextIan McDougall

Simon Phillips

collaborated



<M,  WORD, CW-1, profession-1, profession> 
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Combine Text with Semantics 

M

BarackObama

CW

President

“he”

Freebase

Parsed Text

leader
Profession

“leader”

other 

persons

TW

tokens

words

host

CW

“host”

“president”

e.g.“The president said  …”  
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Tested by existing knowledge in Freebase 

Mean 
Reciprocal 

Rank 

with closed world 
assumption 
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manually evaluated new beliefs 
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Coordinate Term Extraction Task 

parsed MUC-6 corpus   
153k nodes, 748K edges 

30 queries  
given 4 person names as seeds, find other persons 
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Words/POSs 

Tokens 

Tokens 

(Minkov & Cohen, ECML 2010) 

Application 

W

BillGates

BillGates

founded

founded

nsubj

W

W

SteveJobs

SteveJobs founded

nsubj

W

vbd

POS

POS

nnp

POS

POS

W: word  
POS: part of speech 
nnp: singular proper nouns 
vbd: verb, past tense 
nsubj: subject of a verb 



Good Paths Are Quite Long 
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<W-1,nsubj,W,W-1,nsubj-1,W> 

find entities with similar behaviors 

Words 

Tokens 

Tokens 

W

BillGates

BillGates

founded

founded

nsubj

W

W

SteveJobs

SteveJobs founded

nsubj

W



Good Paths Are Quite Long 

7/13/2012 52 
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Forward Search Is Wasteful 
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s

t

Find paths that connect s and t 



Bidirectional Search Is More Efficient 
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s

t

z

challenge is to calculate P(s→t;π) 



Forward vs. Backward RWs 
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( ; ) ( ; ') ( ; )
z

P t s P t z P z s r    

( ; ) ( ; ') ( ; )
z

P s t P s z P z t r    
π’

π’

π’

z3

s z2

z1

t2

t1

r
r

r
r

evaluate P(s→t;π)  

for many s 

π’

π’

π’

z3

t z2

z1

s2

s1

r
r

r
r

Forward  

Backward 

evaluate P(s→t;π)  

for many t 

Details 



Bidirectional Search with RW 
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1 2 1 2( ; ) ( ; ) ( ; )
z

P s t P s z P t z      

π2

π2

π2 t

z3

z2

z1π1

π1s
π1

Forward RW  Backward RW 
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Exceed 20Gb 
memory limit 

1000x 
faster 



Need for Lexicalized Paths 
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P(vbd→t | <POS-1, nsubj-1, W>) 

Task: find person entities 

W

BillGates

BillGates founded

nsubj
W

SteveJobs

SteveJobs founded

nsubj

vbd

POSPOS

Tokens 

Words 

POSs 



Evaluate Lexicalized Paths 
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Given an example (si, ti)  

calculate P(z→ti;π)  for many z 

π

π

π
t

z3

z2

z1
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~1000 correct answers 

Mean 
Average 

Precision 
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Future Work 

Apply knowledge to NLP/IE/IR/CV tasks 
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arg max ( | , )
decision

P decision context KB

wrote

She

Mention

dobj

Charlotte

was

nsubj
nsubj

Jane Eyre

Charlotte

Bronte Jane Eyre

Mention

Coreference?

Entity 

Resolution

Dependency Trees

Write

IsA FemaleKB

Text



Future Work 

Conjunctions of Paths 

rules can have tree structures 

with source/constant/target nodes as leafs 
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founded

t3

nsubj

W

dobj

W

Apple

W

SteveJobs

t2 t1

source s constant z target t 



Future Work 

Conjunctions of Paths 

forward PCRW with multiple walkers 
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founded

t3

nsubj

W

dobj

W

Apple

W

SteveJobs

t2 t1

source s constant z target t 



Future Work 

Conjunctions of Paths 

backward PCRW with multiple walkers 
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founded

t3

nsubj

W

dobj

W

Apple

W

SteveJobs

t2 t1

source s constant z target t 
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Made possible by 

a family of easy-to-learn features (3 types) 

fast random walk (sampling) 

distributed computing 

Apply relational learning at scales  
not possible before. 

Leads to new applications!  



other work I did at CMU 

Relational CRFs (Lao+, NIPS’10) 

Question answering (Lao+, NTCIR’08) 

Utility based retrieval evaluation (Yang+, SIGIR’07) 
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Future Work 

KB extension 
new relation types, new concepts 
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arg max ( | )
KB

P corpus KB KB


 

arg max ( | , )
KB

P decisions contexts KB KB


 

Unsupervised 

Supervised 



Directed Graphical Models 
e.g.  
Probabilistic Relational Models (Getoor+, ICML’01) 
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model structure 
restricted to DAG 

cannot express features 
corresponding to chains 



Coverage of top k triples 
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Profession Triples Unique Persons 

1k 970 

10k 8,726 

100k 79,885 



Repeatedly Combine  
Forward and Backward RWs 
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Forward search 

+Backward Search 

+Backward Search 

W-1,conj_and,W> 

<W-1,conj_and,W, 

W-1,conj_and,W, 



Summary of PRA 
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Stage Computation 

Path Discovery 
 

given {(si, Gi)},  
find {f ; acc(f)>=a, hits(f)>=h} 

Generate Training Samples 
 

generate {(si, ti)} and {(xi, yi)} 

Logistic Regression Training 
 

Prediction 
 

apply model to nodes s in domain(r) 

2

1 1 2 2arg max ( ) || || || ||i

i

l


     
 

   
 




Need for Lexicalized Paths 
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Bias toward MLB 

 A prior over the leagues participated  
by Boston Braves university athletes 

Task=AthletePlaysInLeague 

( ; )P mlb t 

1,
;

AthletePlaysForTeam
P BostonBraves t

AthletePlaysInLeagure

 
  

 



Need for Lexicalized Paths 
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Bias toward Google 

Companies around Google 

Task=CompetesWith 

( ; )P google t 

 ; ,P Google t CompetesWith CompetesWith
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16 tasks 


