US 20120233140A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0233140 A1

Collins-Thompson et al.

43) Pub. Date: Sep. 13, 2012

(54)

(735)

(73)

@

(22)

(1)

CONTEXT-AWARE QUERY ALTERATION

Inventors: Kevyn B. Collins-Thompson,
Seattle, WA (US); Ni Lao,
Pittsburgh, PA (US)

Assignee: Microsoft Corporation, Redmond,
WA (US)

Appl. No.: 13/043,500

Filed: Mar. 9, 2011

Publication Classification

Int. Cl1.

GO6F 17/30 (2006.01)

(52) US.CL ............... 707/706; 707/748; 707/E17.108;
707/E17.014

(57) ABSTRACT

A model generation module is described herein for using a
machine learning technique to generate a model for use by a
search engine. The model assists the search engine in gener-
ating alterations of search queries, so as to improve the rel-
evance and performance of the search queries. The model
includes a plurality of features having weights and levels of
uncertainty associated therewith, where each feature defines a
rule for altering a search query in a defined manner when a
context condition, specified by the rule, is present. The model
generation module generates the model based on user behav-
ior information, including query reformulation information
and user preference information. The query reformulation
information indicates query reformulations made by at least
one agent (such as users). The preference information indi-
cates at extent to which the users were satisfied with the query
reformulations.

[ SEARCH ENGINE
ORIGINAL 102
SEARCH
QuERY [ )
— > QUERY ALTERATION MODULE
REFORM- 106
ULATED - N fmmmmmm .
QUERY(IES) | OPTIONAL |
N CONTEXT-AWARE QUERY : OTHER :
ALTERATION (CAQA) MODULE | ALTERATION |
A < (E.G., SEE FIG. 12) | FUNCTIONALITY |
OPTIONAL 116 | 18 I
QUERY [T T —— !
SUGGEST- MODEL
IONS 112 ¢
ALTERATION
RESOURCE(S)
120
QUERY ALTERATION(S)
A 4
/ { SEARCHING FUNCTIONALITY
~ 108
SEARCH INDEX
RESULTS
v 110
OTHER T | -
SOURCES —| RAINING INFORMATION:
(1) QUERY REFORMULATION INFORMATION
OF TRAINING oy p |
INFORMATION (2) PREFERENCE INFORMATION
(3) ETC.
114

Y

MODEL GENERATION MODULE

(E.G., SEEFIG. 7)

104

100 —7



Patent Application Publication  Sep. 13,2012 Sheet 1 of 13 US 2012/0233140 A1

[ SEARCH ENGINE
ORIGINAL 102
SEARCH
QUERY [ A
——> QUERY ALTERATION MODULE
REFORM- 106
ULATED p N mmmmmmmm— e .
QUERY(IES) ! OPTIONAL |
% CONTEXT-AWARE QUERY | OTHER :
X ) ALTERATION (CAQA) MODULE e >  ALTERATION
r = (E.G., SEE Fic. 12) | FUNCTIONALITY |
OPTIONAL 116 : 118 :
QUERY e :
SUGGEST- MoDEL
IONS 112 ¢
ALTERATION
™ g RESOURCE(S)
120

QUERY ALTERATION(S)

[ SEARCHING FUNCTIONALITY

M

SEARCH { 108 _—
RESULTS
L7 110
OTHER
SOURCES —| TRAINING INFORMATION:
OF TRAINING (1) QUERY REFORMULATION INFORMATION
INFORMATION (2) PREFERENCE INFORMATION

(3) ETC.

114

A 4

MODEL GENERATION MODULE
(E.G., SEE FlG. 7)
104

100 FIG. 1



Patent Application Publication  Sep. 13,2012 Sheet 2 of 13 US 2012/0233140 A1

{class: Domicile}

ILLUSTRATIVE 7
CONTEXT CONDITION //
//
g1 (Original Query): Ski |Cabin|Rentals
92 (Reformulated Query): Ski |House| Rentals _l
RULE X
FIG 2 (FEATURE X)
ANOTHER ILLUSTRATIVE CONTEXT CONDITION
—
q1 (Original Query): Ski |Cabin|Rentals

y
q2 (Reformulated Query): Ski [House| Rentals _l

RULE Y

FIG 3 (FEATURE Y)

ILLUSTRATIVE CONTEXT CONDITION
—N
q1 (Original Query): Alaska Cruise |Cabin

v

92 (Reformulated Query): Alaska Cruise|Room _l

RULE Z

FIG. 4 (FEATURE Z)



Patent Application Publication  Sep. 13,2012 Sheet 3 of 13 US 2012/0233140 A1

q1 (Search Query): Caribbean Cruise Cabin

|

MATCHED AGAINST A SET OF X, WEIGHT, UNCERTAINTY
ALL POSSIBLE FEATURES fy, WEIGHT, UNCERTAINTY
SPECIFIED BY THE MODEL fz, WEIGHT, UNCERTAINTY

l :

CANDIDATE ALTERATION 1, SCORE 1
CANDIDATE ALTERATION 2, SCORE 2
CANDIDATE ALTERATION 3, SCORE 3

.
.
RECOMMENDED
ALTERATION(S), E.G.:

Caribbean Cruise |[(Cabin or Room)

FIG. 5



Patent Application Publication  Sep. 13,2012 Sheet 4 of 13 US 2012/0233140 A1

o— 600
s ™ s N
LocAL REMOTE
COMPUTING COMPUTING
FUNCTIONALITY COMMUNICATION FUNCTIONALITY
602 CONDUIT(S) 604
606
r————————— ~
| ) 4 ~
! BROWSER ! SEARCH
| )
1 FUNCTIONALITY | Er;lglzNE
| |
! 608 | \ |
\_ J ) .
- 7 MODEL
\ y GENERATION
v FUNCTIONALITY
104
. J
MW
P
ﬁ%ﬁ . J
S . } J
FOR EXAMPLE:

FIG. 6 @@ %



Patent Application Publication  Sep. 13,2012 Sheet S of 13 US 2012/0233140 A1

QUERY REFORMULATION

INFORMATION PREFERENCE OTHER
(E.G., REFORMULATED INFORMATION TRAINING
" QUERES) (E.G., CLICKS) INFORMATION
( M\

A4 \ 4

LABEL APPLICATION MODULE
702
LABELING RULES |
(E.G., SEEFIGS. 8 AND 9) |
|
|

706

—_——eeee e e e — =~

LABELED
REFORMULATION
INFORMATION

T4

v

TRAINING MODULE (SEE FIG. 11)
708
FOR EXAMPLE (BAYESIAN, LOGISTIC
REGRESSION, CONFIDENCE-WEIGHTED, ETC.)

MODEL (PARAMETER INFORMATION)
104
(1) FEATURE WEIGHTS
(2) OPTIONAL FEATURE UNCERTAINTY
INFORMATION

MODEL GENERATION MODULE
104

FIG. 7



Patent Application Publication  Sep. 13,2012 Sheet 6 of 13 US 2012/0233140 A1

CLICK/NO CLICK

B

CLICK/No CLIcK

CLICK/NO CLICK // C
A

\\, DCLICKINO CLick

END

FIG. 8

ILLUSTRATIVE
RULES IN ONE
IMPLEMENTATION
CLICK No CLIcK
CLICK Yes (?): Case b Yes: Case a
REFORMULATION B
No CLICK No: Case c No: Case ¢
CLICK No (?): Cased No (?7): Case d
REFORMULATION C
No CLIcK Caseh Case h
ABANDONED Caseh Caseh

FIG. 9



Patent Application Publication  Sep. 13,2012 Sheet 7 of 13 US 2012/0233140 A1

NOTATION CONTEXT CONDITION DEFINITION
p
1
A specific context component w
(w)S1>82 appears anywhere in g1
2
) A specific context component w
(w_)S1->82 appears immediately before S1 in g1
3
A specific context component w
(Lw)S1>S2 appears immediately after S1 in g1
\
- 4
<N> S1-5>82 The length of S1 (orq1)is N, eg., 1, 2,
or more
5
<1>81->82 g1 only consists of S1
3 6
g1 consists of a single context
<ws> S1>82 component followed by S1
7
<sw> S1582 g1 consists of S1 followed by a single
context component
|

FIG. 10



Patent Application Publication  Sep. 13,2012 Sheet 8 of 13 US 2012/0233140 A1

TRAINING MODULE
708
4 Y 'd N
FEATURE MATCHING
MODULE
1102 PARAMETER
ey . INFORMATION
| [ A GENERATION
1 MATCHING : MODULE
! CRITERIA 1106
! 1104 ' E—
T __ /
. y, \ J

FIG. 11

CONTEXT-AWARE QUERY ALTERATION (CAQA) MODULE
116

FEATURE MATCHING
MODULE SCORE
1202 DETERMINATION

(mm——————— ~ MODULE

| MATCHING | 1206

| CRITERA | L J

[ 1204 '

- b . v .
- - MODEL

104

(1) FEATURE WEIGHTS

(2) OPTIONAL FEATURE
UNCERTAINTY
INFORMATION

FIG. 12



Patent Application Publication  Sep. 13,2012 Sheet 9 of 13 US 2012/0233140 A1

( START )

[
>

y

f
RECEIVE QUERY REFORMULATION INFORMATION
1302
. - J
y
4 ™
RECEIVE PREFERENCE INFORMATION
1304
\_ Y,
y
~
GENERATE LABELED REFORMULATION INFORMATION BASED ON
THE QUERY REFORMULATION INFORMATION AND THE
PREFERENCE INFORMATION
1306
Y,

Y

( GENERATE A MODEL BASED ON THE LABELED REFORMULATION h
INFORMATION (OR UPDATE A CURRENT MODEL)
(E.G., SEE FIG. 14)
1308

\. J
A 4
\
INSTALL THE (ORIGINAL OR UPDATED) MODEL IN A SEARCH
ENGINE

1310

- J

UPDATING OF
MODEL END
1312

FIG. 13



Patent Application Publication  Sep. 13,2012 Sheet 10 of 13 US 2012/0233140 A1

FOR QUERY PAIR (q1, q2)

( START )

\ 4

IDENTIFY A QUERY COMBINATION, E.G., (91, 92)
1402

A 4

IDENTIFY DIFFERENCE BETWEEN g1 AND g2
1404

A 4

gl 10 g2
1406

\ 4

GENERATE (E.G., UPDATE) PARAMETER INFORMATION
BASED ON THE IDENTIFIED FEATURE(S)
1408

(o N N N

[ IDENTIFY FEATURE(S) WHICH DESCRIBE MODIFICATION OF

END

FIG. 14



Patent Application Publication  Sep. 13,2012 Sheet 11 of 13 US 2012/0233140 A1

x— 1500
( START )
Y
RECEIVE A SEARCH QUERY Q1
1502

KIDENTIFY CANDIDATE ALTERATION(S) ASSOCIATED WITH THE\
SEARCH QUERY (IF ANY) BY MATCHING THE SEARCH
QUERY AGAINST A SET OF POSSIBLE FEATURES DEFINED
BY A MODEL, EACH CANDIDATE ALTERATION HAVING A
SCORE ASSOCIATED THEREWITH
1504

IDENTIFY RECOMMENDED ALTERATION(S) (IF ANY)
SELECTED FROM AMONG THE CANDIDATE ALTERATION(S),
BASED ON THE IDENTIFIED SCORE(S)

1506

A4

[ APPLY OR SUGGEST THE RECOMMENDED ALTERATION(S) J

1510

END v

ALTERNATIVELY,
NO ALTERATION
IS VIABLE

FIG. 15 1508



Patent Application Publication  Sep. 13,2012 Sheet 12 of 13 US 2012/0233140 A1

input data = {(q1, {g2})}

N+=0
N_=0

foreach (q1, {g2}) in data
Ctot = Cq1 + quCquz } 1602
foreach reformulation 92 in {g2}

N+ =N, + Cq2|q1 1604
N_=N_+ Ctot + Iq2|q1 - 2C(3|2|q1

foreach feature f matched in (q1, g2)

Nf+ = Nf+ + Cq2|q1 1606
Nf_ = Nf_ + Ctot + Iq2|q1 - 2Cq2|q1
end for
end for

end for

return (N, N_, {Ns., N¢.})

FIG. 16



Patent Application Publication  Sep. 13,2012 Sheet 13 of 13 US 2012/0233140 A1

1700
PRESENTATION
MODULE
1716
T >
lGUl
1718 |
l\ _____ .
> A g
COMMUNICATION
CONDUIT(S)
PROCESSING 1722
DEVICE(S)
1706
NETWORK
Vo INTER-
1712 < 1724 FACE(S)
il 1720
A
N
SYSTEM MEDIA
RAM o | | Device(s) | -+
1702 — 1708
( If)\)
N — - ,
uT
MOIEZLE(S) COMPUTER-READABLE
1714 MEDIUM EXAMPLES
1710

FIG. 17



US 2012/0233140 Al

CONTEXT-AWARE QUERY ALTERATION

BACKGROUND

[0001] A user’s search query may not be fully successtul in
retrieving relevant documents. This is because the search
query may use terms that are not contained in or otherwise
associated with the relevant documents. To address this situ-
ation, search engines commonly provide an alteration module
which automatically modifies a search query to make it more
effective in retrieving the relevant documents. Such modifi-
cation can entail adding term(s) to the original search query,
removing term(s) from the original search query, replacing
term(s) in the original search query with other term(s), cor-
recting term(s) in the original search query, and so on. More
specifically, such modification may encompass spelling cor-
rection, selective stemming, acronym normalization, query
expansion (e.g., by adding synonyms, etc.), and so on. In one
case, a human agent may manually create the rules which
govern the manner of operation of the alteration module.

[0002] On average, an alteration module can be expected to
improve the ability of a search engine to retrieve relevant
documents. However, the alteration module may suffer from
other shortcomings. In some cases, for instance, the alteration
module may incorrectly interpret a term in the original search
query. This results in the modification of the original search
query in a manner that significantly subverts the intended
meaning of the original search query. Based on this altered
query, the search engine may identify a set of documents
which is completely irrelevant to the user’s search objectives.
Such a dramatic instance of poor performance can bias a user
against future use of the search engine, even though the alter-
ation module is, on average, improving the performance of
the search engine. Moreover, it may be a time-intensive and
burdensome task for developers of the search engine to manu-
ally specify the rules which govern the operation of the alter-
ation module.

[0003] The challenges noted above are presented by way of
example, not limitation. Search engine technology may suffer
from yet other shortcomings.

SUMMARY

[0004] A model generation module is described herein for
using a machine-learning technique to generate a model for
use by a search engine, where that model assists the search
engine in altering search queries. According to one illustra-
tive implementation, the model generation module operates
by receiving query reformulation information that describes
query reformulations made by at least one agent (such as a
plurality of users). The model generation module also
receives preference information which indicates behavior
performed by the users that is responsive to the query refor-
mulations. For example, the preference information may
identify user selections of items within search results, where
those search results are generated in response to the query
reformulations. The model generation module then generates
labeled reformulation information based on the query refor-
mulation information and the preference information. The
labeled reformulation information includes tags which indi-
cate an extent to which the query reformulations were deemed
satisfactory by the users. The model generation module then
generates a model based on the labeled reformulation infor-

Sep. 13,2012

mation. The model provides functionality, for use by the
search engine, at query time, for mapping search queries to
query alterations.

[0005] More specifically, the model comprises a plurality
of features having weights associated therewith. Each feature
defines a rule for altering a search query in a defined manner
when a context condition, specified by the feature, is deemed
to apply to the search query. Optionally, each feature (and/or
combination of features) may also have a level of uncertainty
associated therewith.

[0006] The search engine can operate in the following man-
ner at query time, e.g., once the above-described model is
installed in the search engine. The search engine begins by
receiving a search query. The search engine then uses the
model to identify at least one candidate alteration of the
search query (if there is, in fact, at least one candidate alter-
ation). Each candidate alteration matches at least one feature
in a set of features specified by the model. The search engine
then generates at least one recommended alteration of the
search query (if possible), selected from among the candidate
alteration(s), e.g., based on score(s) associated with the can-
didate alteration(s).

[0007] As will be described herein, the model improves the
ability of the search engine to generate relevant search results.
In certain implementations, the search engine can also be
configured to conservatively discount individual features
and/or combinations of features that have high levels of
uncertainty associated therewith. This provision operates to
further reduce the risk that the search engine will select incor-
rect alterations of search queries.

[0008] The above approach can be manifested in various
types of systems, components, methods, computer readable
media, data structures, articles of manufacture, and so on.
[0009] This Summary is provided to introduce a selection
of concepts in a simplified form; these concepts are further
described below in the Detailed Description. This Summary
is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used to
limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 shows an environment that includes a search
engine and a model generation module. The model generation
module uses a machine learning technique to generate a
model for use by the search engine in generating query alter-
ations of search queries.

[0011] FIGS. 2-5 together provide a simplified example of
one manner of operation of the environment shown in FIG. 1.
[0012] FIG. 6 shows one implementation of the environ-
ment shown in FIG. 1.

[0013] FIG. 7 shows one implementation of the model gen-
eration module shown in FIG. 1.

[0014] FIGS. 8 and 9 provide illustrative details regarding
one manner of operation of a label application module pro-
vided by the model generation module of FIG. 7.

[0015] FIG. 10 is a table that shows an illustrative set of
context conditions associated with model features.

[0016] FIG. 11 shows one implementation of a training
module provided by the model generation module of FIG. 7.
[0017] FIG. 12 shows one implementation of a context-
aware query alteration module provided by the search engine
of FIG. 1.

[0018] FIG. 13 is a flowchart that shows one manner of
operation of the model generation module of FIG. 1.



US 2012/0233140 Al

[0019] FIG. 14 is a flowchart that shows additional details
regarding the operation of the model generation module of
FIG. 1.

[0020] FIG. 15 is a flowchart that shows one manner of
operation of the search engine shown in FIG. 1.

[0021] FIG.16 is ahigh-level representation of a procedure
for generating parameter information, used to produce a
Naive Bayes model.

[0022] FIG. 17 shows illustrative processing functionality
that can be used to implement any aspect of the features
shown in the foregoing drawings.

[0023] The same numbers are used throughout the disclo-
sure and figures to reference like components and features.
Series 100 numbers refer to features originally found in FIG.
1, series 200 numbers refer to features originally found in
FIG. 2, series 300 numbers refer to features originally found
in FIG. 3, and so on.

DETAILED DESCRIPTION

[0024] This disclosure is organized as follows. Section A
describes an illustrative search engine, including a query
alteration module for altering search queries to make them
more relevant. Section A also describes a model generation
module for using a machine learning technique to generate a
model for use by the query alteration module. Section B
describes illustrative methods which explain the operation of
the search engine and model generation module of Section A.
Section C describes illustrative processing functionality that
can be used to implement any aspect of the features described
in Sections A and B.

[0025] As a preliminary matter, some of the figures
describe concepts in the context of one or more structural
components, variously referred to as functionality, modules,
features, elements, etc. The various components shown in the
figures can be implemented in any manner by any physical
and tangible mechanisms (for instance, by software, hard-
ware, firmware, etc., and/or any combination thereof). In one
case, the illustrated separation of various components in the
figures into distinct units may reflect the use of corresponding
distinct physical and tangible components in an actual imple-
mentation. Alternatively, or in addition, any single compo-
nent illustrated in the figures may be implemented by plural
actual physical components. Alternatively, or in addition, the
depiction of any two or more separate components in the
figures may reflect different functions performed by a single
actual physical component. FIG. 17, to be discussed in turn,
provides additional details regarding one illustrative physical
implementation of the functions shown in the figures.
[0026] Other figures describe the concepts in flowchart
form. In this form, certain operations are described as consti-
tuting distinct blocks performed in a certain order. Such
implementations are illustrative and non-limiting. Certain
blocks described herein can be grouped together and per-
formed in a single operation, certain blocks can be broken
apart into plural component blocks, and certain blocks can be
performed in an order that differs from that which is illus-
trated herein (including a parallel manner of performing the
blocks). The blocks shown in the flowcharts can be imple-
mented in any manner by any physical and tangible mecha-
nisms (for instance, by software, hardware, firmware, etc.,
and/or any combination thereof).

[0027] As to terminology, the phrase “configured to”
encompasses any way that any kind of physical and tangible
functionality can be constructed to perform an identified

Sep. 13,2012

operation. The functionality can be configured to perform an
operation using, for instance, software, hardware, firmware,
etc., and/or any combination thereof.

[0028] The term “logic” encompasses any physical and
tangible functionality for performing a task. For instance,
each operation illustrated in the flowcharts corresponds to a
logic component for performing that operation. An operation
can be performed using, for instance, software, hardware,
firmware, etc., and/or any combination thereof. When imple-
mented by a computing system, a logic component represents
an electrical component that is a physical part of the comput-
ing system, however implemented.

[0029] The following explanation may identify one or more
features as “optional” This type of statement is not to be
interpreted as an exhaustive indication of features that may be
considered optional; that is, other features can be considered
as optional, although not expressly identified in the text.
Similarly, the explanation may indicate that one or more
features can be implemented in the plural (that is, by provid-
ing more than one of the features). This statement is not be
interpreted as an exhaustive indication of features that can be
duplicated. Finally, the terms “exemplary” or “illustrative”
refer to one implementation among potentially many imple-
mentations.

[0030] A.Illustrative Search Engine and Model Generation
Module
[0031] FIG. 1 shows an environment 100 which includes a

search engine 102 together with a model generation module
104. At query time, the search engine 102 receives a search
query from a user. In response, the search engine 102 identi-
fies documents that may be relevant to the search query. To
perform this task, the search engine 102 includes a query
alteration module 106. If deemed appropriate, the query alter-
ation module 106 transforms the search query into one or
more alternative version of the search query, each referred to
herein as a query alteration. Searching functionality 108 then
uses the query alteration(s) to perform a search over a search
index, e.g., as provided in one or more data stores 110. The
searching functionality 108 can then provide the search
results to the user. The search results may comprise a list of
text snippets and resource identifiers (e.g., URLs) associated
with the documents (e.g., web pages) that have been identified
as relevant to search query. The purpose of the model genera-
tion module 104 is to use a machine learning technique to
generate a model 112. The model 112, once installed in the
search engine 102, enables the query alteration module 106 to
transform the original search query into the query alteration.
[0032] In many of the examples presented herein, the
search engine 102 may comprise functionality for searching a
distributed repository of resources that can be accessed via a
network, such as the Internet. However, the term search
engine encompasses any functionality for retrieving struc-
tured or unstructured information in any context from any
source or sources. For example, the search engine 102 may
comprise retrieval functionality for retrieving information
from an unstructured database.

[0033] The above-summarized components of the environ-
ment 100 will be explained below in turn. To begin with, FI1G.
1 indicates that the model generation module 104 generates
the model 112 based on training information which may be
stored in one or more data stores 114. For example, the data
store(s) 114 may represent a web log. The training informa-
tion may include user behavior information. The user behav-
ior information, in turn, includes at least two components:



US 2012/0233140 Al

query reformulation information and preference information.
The query reformulation information identifies queries refor-
mulations made by at least one agent in an effort to retrieve
relevant documents, such as query reformulations created by
users, and/or query reformulations suggested by the query
alternation module 106 itself (and subsequently selected by
the users), etc. For example, a user may enter a first search
query (ql), which prompts the search engine 102 to provide
search results which identify a first set of items, such as
documents. The user may or may not be satisfied with the
search results produced by the first search query (q1). If not,
the user may decide to manually modify the first search query
(q1) in any manner to produce a second, reformulated, search
query (q2). This prompts the search engine 102 to identify a
second set of documents. The user may repeat this procedure
any number of times until the user receives search results that
satisfy his or her search objectives, or until the user abandons
the search. Generally, the query formulation information
describes the consecutive queries entered by users in the
above-described iterative search behavior.

[0034] The preference information describes any behavior
exhibited by users which has a bearing on whether or not the
users are satisfied with the results of their respective search
queries. For example, with respect to a particular reformu-
lated query, the preference information may correspond to an
indication of whether or not a user selected an item within the
search results generated for that particular reformulated
query, such as whether or not the user “clicked on” or other-
wise selected at least one network-accessible resource (e.g., a
web page) within the search results. In addition, or alterna-
tively, the preference information can include other types of
information, such as dwell time information, re-visitation
pattern information, etc.

[0035] The above-described preference information can be
categorized as implicit preference information. This informa-
tion indirectly reflects a user’s evaluation of the search results
of'a search query. In addition, or alternatively, the preference
information can include explicit preference information.
Explicit preference information conveys a user’s explicit
evaluation of the results of a search query, e.g., in the form of
an explicit ranking score entered by the user or the like.
[0036] Based on the query formulation information and the
preference information, the model generation module 104
generates labeled reformulation information. For each query
reformulation, the labeled reformulation information pro-
vides a tag or the like which indicates the extent to which a
user is satisfied with the query reformulation (in view of the
particular search objective of the user at that time). In one
case, such a tag can provide a binary good/bad assessment; in
another case, the tag can provide a multi-class assessment. In
the binary case, a query reformulation is good if it can be
directly or indirectly assumed that a user considered it as
satisfactory, e.g., based on click data conveyed by the prefer-
ence information and/or other evidence. A query formulation
is bad if it can be directly or indirectly assumed that a user
considered it as unsatisfactory, e.g., based on the absence of
click data and/or other evidence. The explanation below (with
reference to FIG. 9) provides illustrative preference-mapping
rules that can be used in one implementation to map the
preference information to particular query reformulation
labels for the binary case.

[0037] In the above case, the tags applied to query refor-
mulations reflect individual assessments made by individual
users (either implicitly or explicitly). In addition, or alterna-

Sep. 13,2012

tively, the model generation module 104 can assign tags to
query formulations based on the collective or aggregate
behavior of a group of users. Further, the model generation
module 104 can apply a single tag to a set of similar query
reformulations, rather than to each individual query reformu-
lation within that set.

[0038] The corpus of labeled reformulated queries com-
prises a training set used to generate the model. More specifi-
cally, the model generation module 104 uses the labeled
reformulated information to generate the classification model
112, based on a machine learning technique. The model 112
thus produced comprises a plurality of features having
respective weights associated therewith. Optionally, each fea-
ture may also have alevel of uncertainty associated therewith.
Optionally, the model 112 can also express pairwise uncer-
tainty, that is, the amount that two features covary together,
and/or uncertainty associated with any higher-order combi-
nation(s) of features (e.g., expressing three-way interaction or
greater).

[0039] More specifically, each feature defines a rule for
altering a search query in a defined manner at query time,
assuming that the feature matches the search query. For
example, for a feature to match the search query, the search
query (and/or circumstance surrounding the submission of
the search query) is expected to match a context condition
(CC) specified by the feature. Once generated, the model 112
can be installed by the query alteration module 106 for use in
processing search queries in normal production use of the
search engine 102.

[0040] More specifically, at query time, assume that a user
submits a new search query. The query alteration module 106
can use the model 112 to identify zero, one, or more candidate
alterations that are appropriate for the search query. Namely,
each candidate alteration matches at least one feature in a set
of features specified by the model 112. If possible, the query
alteration module 106 then generates at least one recom-
mended alteration of the search query, selected from among
the candidate alteration(s). This can be performed based on
scores associated with the respective candidate alteration(s).
The search engine 102 can then automatically pass the rec-
ommended alteration(s) to the searching functionality 108.
Alternatively, or in addition, the search engine 102 can direct
the recommended alteration(s) to the user for his or her con-
sideration.

[0041] Inone implementation, the query alteration module
106 includes a context-aware query alteration (CAQA) mod-
ule 116 which performs the above-summarized functions.
The CAQA module 116 is said to be “context aware” because
it takes into account contextual information within (or other-
wise applicable to) the search query in the course of modify-
ing the search query. The CAQA module 116 can optionally
work in conjunction with other (possibly pre-existing) alter-
ation functionality 118 provided by the search engine 102.
For example, the CAQA module 116 can perform high-end
contextual modification of the search query, while the other
alteration functionality 118 can perform more routine modi-
fication of the search query, such by providing spelling cor-
rection and routine stemming, etc. In another manner of com-
bined use, the CAQA module 116 can perform a query
alteration if it has suitable confidence that the alteration is
valid. If not, the query alteration module 106 can rely on the
other alteration functionality 118 to perform the alteration;
this is because the other alteration functionality 118 may have
access to more robust and/or dependable data compared to the



US 2012/0233140 Al

CAQA module 116. Or the CAQA module 116 can refrain
from applying or suggesting any query alterations.

[0042] FIGS. 2-5 provide a simplified example which clari-
fies the above-summarized principles. Starting with FIG. 2,
assume that a user inputs a first search query (q1), “Ski Cabin
Rentals,” with the objective of retrieving documents relevant
to cabins that can be rented for an upcoming ski vacation.
Assume, however, that the user is unsatisfied with the list of
documents returned by the search engine 102 in response to
the first search query (ql). To address this situation, assume
that the user decides to modify the first search query (ql1) by
changing the word “Cabin” to “House.” This produces a
second search query (q2), namely, “Ski House Rental,”
which, in turn, produces a second list of documents. Assume
that the user is now satisfied with at least one document in the
second list of documents, e.g., as evidenced by the fact that
the user clicks on this document in the list of search results or
otherwise performs some behavior that evinces an interest in
this document.

[0043] As to terminology, each component in a search
query is referred herein as a query component or query entity.
For example, the first search query (q1) includes the query
components “Ski,” “Cabin,” and “Rentals”” Here, the
sequence of query components corresponds to a sequence of
words input by the user in formulating the search query. Any
query component can alternatively refer to information which
is related to or derived from one or more original words in a
search query. For example, the search engine 102 can consult
any type of ontology to identify a class (or other entity) that
corresponds to an original word in a search query. That entity
can be subsequently added to the search query, e.g., to supple-
ment the original words in the search query and/or to replace
one or more original words in the search query. One illustra-
tive ontology that can be used for this purpose is the YAGO
ontology described in, for example, Suchanek, et al., “YAGO:
A Core of Semantic Knowledge Unifying WordNet and Wiki-
pedia,” Proceedings of the 16th International Conference on
World Wide Web, 2007, pp. 697-706. In the context of FIG. 1,
this figure shows that the query alteration module 106 can
utilize one or more alteration resources 120 in processing
search queries, one of which may be any type of ontology.
And FIG. 2 indicates the manner in which a word in the first
search query (q1) (“cabin”) can be mapped, using an ontol-
ogy, to a class (“domicile”). However, so as to not unduly
complicate the following explanation, most of the examples
will make the simplifying assumption that the query compo-
nents correspond to original words in the search query.

[0044] There is a part of the first search query (q1) which is
not common to the second search query (q2). This first part is
referred to by the symbol 51. The first part (S1) can include a
sequence of zero, one, or more query components. There is
also a counterpart part of the second search query (q2) which
is not common to the first search query (q1). This second part
is referred to by the symbol S2. The second part (S2) can
include a sequence of zero, one, or more query components.
The transformation of the first part to the second part is
referred to by the notation 514 S2. In the example of FIG. 2,
the first part (S1) corresponds to the query component
“Cabin” and second part (S2) corresponds to the query com-
ponent “House.” In the examples that follow, to facilitate
explanation, it will be assume that the modification of S1 to
S2 involves the modification, introduction, or removal of a
single query component, e.g., a word, class label, etc.

Sep. 13,2012

[0045] A context condition (CC) defines a context under
which the first part (S1) is transformed into the second part
(S2). More specifically, in one case, the context condition
may include a combination of zero, one, or more context
components (e.g., corresponding to zero, one, or more respec-
tive query components) that are expected to be present in the
first query for the modification S1—S2 to take place. In the
scenario of FIG. 1, the context condition corresponds to the
single context component “Ski” More generally, in the
examples to follow, each context condition will correspond to
a single query component. But, in the more general case, a
context condition can include a combination of two or more
context components, formally described as A,c,, where c,
refers to the ith context component and A, refers to any way of
combining that component with other components, e.g.,
using an AND operator, OR operator, NOT operator, etc. A
context condition that has zero context components indicates,
in one interpretation, that the context condition may apply to
every possible context.

[0046] Inthe above examples, the context condition refers
to query components that are present in a search query. How-
ever, as will be described below, a context condition may
more generally refer to a prevailing context in which the user
submits the search query. The context condition of the search
query may derive from information that is imparted from
some source other than the search query itself.

[0047] The model generation module 104 can derive at
least one feature based on the query reformulation described
in FIG. 2. To repeat, each feature describes a rule for convert-
ing S1 to S2 under the presence of a context condition, or
more formally expressed as (CC) S1—S2, where CC repre-
sents the context condition. In the case of FIG. 2, the feature
states that the query component “Cabin” is transformed into
the query component “House” in the presence of the context
condition “Ski.” Less formally stated, the feature states that,
when the word “Cabin” is used in the same query with the
word “Ski,” it may mean that the user is attempting to describe
a house that is nearby a ski slope, instead of using the word
“Cabin” in a different sense, such as the nautical sense of FIG.
4

[0048] In many cases, the model generation module 104
can generate a plurality of rules based on a single query
reformulation. For example, FIG. 3 shows the same query
formulation as FIG. 2. In this case, the model generation
module 104 identifies the context condition “Rentals,”
instead of the context condition “Ski.”” This results in the
generation of another feature based on this context condition.
Another feature (not shown) may specify a context condition
that identifies the length of S1 (e.g., the number of query
components in S1), and so on.

[0049] In general, when mining a query pair for features,
the model generation module 104 can look for any context
condition selected from a set of possible context conditions.
FIG. 10, to be described below, describes one such set of
possible context conditions. From a high level perspective,
some of the context conditions depend on the mere presence
of a context component (e.g., a query component) in the first
search query (q1). Other of the context conditions depend on
a particular location of a context component within the first
search query (ql). In addition, or alternatively, some of the
context conditions specify constraints that pertain to the
length of the first search query (ql), e.g., relating to the
number of query components in the first search query, and so
on. And as noted above, other context conditions can pertain



US 2012/0233140 Al

to information which derives from a source (or sources) that
are beyond that of the immediate search query.

[0050] FIG. 4 shows another query formulation in which
the user enters a first search query “Alaska Cruise Cabin.”
Here, the user is apparently looking for information regarding
the rooms of a cruise ship. If the user is unhappy with the
results of the first search query, assume that the user enters a
second search query, namely “Alaska Cruise Room.” The
model generation module 104 learns a feature based on this
reformulation that specifies that the query component
“Cabin” is modifiable to the query component “Room” in the
presence of the context condition “Cruise.”” In other words,
the word “Cruise” casts a different interpretation on the man-
ner in which the word “Cabin” is to be modified, compared to
the first example (of FIG. 2).

[0051] As canbe appreciated, the model generation module
104 can generate an enormous number of features by process-
ing query reformulations in the manner described above. In
this process, the model generation module 104 can transform
the search queries and their respective query reformulations
into feature space. This space represents each query using one
or more features, as described above. The features associated
with queries may be viewed as statements that characterize
those queries, where those statements that can be subse-
quently processed by a machine learning technique.

[0052] However, many of the features in feature space are
encountered only once or only a few times, and thus do not
provide general rules to guide the operation of the CAQA
module 116 at query time. To identify meaningful features,
the model generation module 104 generates parameter infor-
mation. For example, the parameter information can include
weights assigned to each feature. Generally speaking, a
weight relates to a number of instances of a feature which
have been encountered in a corpus of query reformulations.
The parameter information can also optionally include uncer-
tainty information (such as variance information) which
reflects the level of uncertainty associated with each indi-
vidual feature, e.g., each weight. As stated above, the uncer-
tainty information can also express joint uncertainty, that is,
the amount that two features covary together, and/or uncer-
tainty associated with higher-order combinations.

[0053] For example, a feature that is observed many times
and is consistently regarded as satisfactory by auser will have
a high weight and a low level uncertainty. This feature is
therefore a meaningful feature for inclusion in the model 112.
A feature which is observed many times but has an inconsis-
tent interpretation (as good or bad) may have a relatively high
weight but a higher level of uncertainty (compared to the first
case). A feature which is seldom encountered may have a low
weight and a high level of uncertainty. As will be described in
greater detail below, in one implementation, the model gen-
eration module 104 may bias the interpretation of weights in
aconservative mannet, e.g., by diminishing a feature’s weight
in proportion to its level of uncertainty. Further, to expedite
and simplify subsequent query-time processing, the model
generating module 104 can remove features that have weights
and/or levels of uncertainties that do not satisfy prescribed
threshold(s).

[0054] Assume that a model 112 is produced based on a
corpus of training information, a small part of which is shown
in FIGS. 2-3. Then assume that the model 112 is installed in
the CAQA module 116. At query time, the CAQA module 116
applies the model 112 when processing new search queries.
FIG. 5 shows one such illustrative search query. Here, the user

Sep. 13,2012

inputs “Caribbean Cruise Cabin,” with the apparent intent of
investigating information regarding rooms on a cruise ship
that sails the Caribbean Sea. In operation, the CAQA module
116 first matches the search query against a set of possible
features specified in the model 112. The search query matches
a feature when it includes a part S1 and a context condition
that are specified by the feature. If there is a match, the
matching feature supplies the part S2 of the feature. Each
matching feature has a weight, and, optionally, an uncertainty
associated therewith. Any combinations of features (such as
pairs of features, etc.) may also have uncertainty associated
therewith.

[0055] By identifying a matching feature, the CAQA mod-
ule 116 also generates a counterpart candidate alteration of
the search query (“Caribbean Cruise Cabin™). In some cases,
a single query candidate alteration may be predicated on two
or more underlying matching features. The CAQA module
116 also assigns a score to each candidate alteration based on
the weight(s) (and optionally uncertainty(ies)) associated
with the candidate alteration’s underlying matching feature
(s).

[0056] The CAQA module 116 can then select one or more
of the candidate alterations based on the scores associated
therewith. According to the terminology used herein, this
operation produces one or more recommended alterations.
The top-ranked recommended alteration shown in FIG. 5 is
“Caribbean Cruise (Cabin or Room).” For this entry, it is
apparent that the CAQA module 116 has applied the rule
learned in FIG. 4, rather than the two rules learned in FIGS. 2
and 3. This is an appropriate outcome because the user is
using the word “Cabin” in the context of a room on a ship, not
a house on land. The search engine 102 may then proceed to
pass the altered search query (“Caribbean Cruise (Cabin or
Room)”) to the searching functionality 108. In some cases,
the search engine 102 can pass two or more recommended
alterations to the searching functionality 108, both of which
are used to generate search results. Or the search engine 102
may just suggest one or more query alterations to the user.

[0057] Intheabove simplified example, the model 112 was
learned on the basis of a context condition expressed in each
search query ql of each pair of consecutive search queries
(q1, q2). And in the real-time search phase, the CAQA mod-
ule 116 examines the context condition expressed in the cur-
rent search query q1. In other cases, the context condition can
be derived from any other source (or sources) besides, or in
addition to, the user’s search query ql. For example, the
context condition that is deemed to apply to a particular
search query q1 can originate from any other search query in
the user’s current search session, and/or any group of search
queries in the current search session, and/or any search query
(ies) over plural of the user’s search sessions. In addition, or
alternatively, a context condition can derive from text that
appears in text snippets that appear in the search results, etc.
In addition, or alternatively, the context condition can derive
from any type of user profile information (associated with the
person who is currently performing the search). In addition,
or alternatively, the context condition can derive from any
behavior of the user beyond the reformulation behavior of the
user, and so on. These variations are representative, rather
than exhaustive. Generally stated, the context condition refers
to any circumstance in which a transformation from S1—-S2
has been observed to take place, derivable from any source(s)
of evidence. This, in turn, means that the features themselves
are derivable from any combination of sources. However, to



US 2012/0233140 Al

facilitate the explanation, the remaining description will
assume that the features are mined from pairs of consecutive
queries.

[0058] In addition, the CAQA module 116 can create a
query alteration by applying two or more features in succes-
sion to an input search query q1. However, to facilitate the
explanation, the remaining description will assume that the
CAQA module 116 applies a single feature having a single
transformation S1—=S2.

[0059] FIG. 6 depicts one illustrative implementation 600
of the environment 100 shown in FIG. 1. In this example, a
user interacts with local computing functionality 602 to input
search queries and receive search results. The local comput-
ing functionality 602 can be implemented by any computing
functionality, including a personal computer, a computer
workstation, a laptop computer, a PAD-type computer device,
a game console device, a set-top box device, a personal digital
assistant device, and electronic book reader device, a mobile
telephone device, and so on.

[0060] The local computing functionality 602 is coupled to
remote computing functionality 604 via one or more commu-
nication conduits 606. The remote computing functionality
604 can be implemented by one or more server computers in
conjunction with one or more data stores, routers, etc. This
equipment can be provided at a single site or distributed over
plural sites. The communication conduit(s) 606 can be imple-
mented by one or more local area networks (LANs), one or
more wide area networks (WANS5) (e.g., the Internet), one or
more point-to-point connections, and so on, or any combina-
tion thereof. The communication conduits(s) 606 can include
any combination of hardwired links, wireless links, name
servers, routers, gateways, etc., governed by any protocol or
combination of protocols.

[0061] Inoneimplementation, the remote computing func-
tionality 604 implements both the search engine 102 and the
model generation module 104. Namely, the remote comput-
ing functionality 604 can provide these components at the
same site or at different respective sites. A user may operate
browser functionality 608 provided by the local computing
functionality 602 in order to interact with the search engine
102. However, this implementation is one among many. In
another case, the local computing functionality 602 can
implement at least some aspects of the search engine 102
and/or the model generation module 104. In another imple-
mentation, the local computing functionality 602 can imple-
ment all aspects of the search engine 102 and/or the model
generation module 104, potentially dispensing with the use of
the remote computing functionality 604.

[0062] Having now set forth an overview of the environ-
ment 100 shown in FIG. 1, the remaining explanation in this
section will set forth additional details regarding individual
components within the environment 100.

[0063] Starting with FIG. 7, this figure shows additional
details regarding the model generation module 104 of FIG. 1.
The model generation module 104 includes a label applica-
tion module 702 which receives the query reformulation
information and the preference information from a web log
(associated with the data store(s) 114 shown in FIG. 1),
optionally as well as other training information. To repeat, the
query reformulation information describes a plurality of
query reformulations made by at least one agent, such as
users. The preference information reflects behavior that can
be mined to infer an extent to which the users were satisfied
(or not) with their query formulations.

Sep. 13,2012

[0064] The label application module 702 uses the query
reformulation information and preference information to
assign labels, either individually or in some aggregate form,
to the reformulated queries, forming labeled reformulation
information, which can be stored in one or more data stores
704. For example, in the binary case, the label application
module 702 can assign a first label (e.g., +1) that indicates that
the user was satisfied with a query reformulation, and a sec-
ond label (e.g., —1) that indicates that the user was dissatisfied
with the query reformulation. To function as described, the
label application module 702 can rely on a set of labeling
rules 706. One implementation of the labeling rules 706 will
be set forth in the context of FIGS. 8 and 9 (below).

[0065] A training module 708 uses a machine learning
technique to produce the model 112 based on the labeled
reformulation information. The training process generally
involves identifying respective pairs (or other combinations)
of queries, identifying features which match the pairs of
queries, and generating parameter information pertaining to
the features that have been identified. This effectively con-
verts the queries into a feature-space representation of the
queries. The parameter information can express weights asso-
ciated with the features, as well as (optionally) the levels of
uncertainty (e.g., individual and/or joint) associated with the
features. More specifically, the training module 708 can use
different techniques to produce the model 112, including, but
not limited, to a Naive Bayes technique, a logistic regression
technique, a confidence-weighted technique, and so on. Sec-
tion B provides additional details regarding these techniques.

[0066] In the binary case, FIGS. 8 and 9 together set forth
one approach that can be used to label query reformulations as
satisfactory or unsatisfactory based on click data. In one
implementation, the click data reflects network-related
resources (e.g., web pages) that the users clicked on immedi-
ately after submitting queries and receiving associated search
results. As explained above, other implementations can mine
other facets of user behavior to determine the users’ likes and
dislikes.

[0067] Starting with FIG. 8, assume that the user first enters
search query A. Some of the users then reformulate query A as
query B. Other users reformulate the query A as query C.
Other users reformulate the query A as query D, and so on.
Still other users abandon the search altogether after entering
query A. At any juncture, the user may either click on at least
one entry in the search results (“Click™) or not click on any
entries in the search results (“No Click™).

[0068] According to the terminology used herein, the num-
ber of users who are given the opportunity to click on any
entry in the search results generated by a search query X is
denoted as I (e.g., indicating the number of impressions for
that query X). The number of users who actually clicked on an
entry for query X is denoted as C,.. The number of users who
are given the opportunity to click on any entry for query Y
after entering query X is denoted as I, . The number of users
who actually clicked on any entry in this X—Y circumstance
is denoted by Cy, -

[0069] FIG. 9 sets forth illustrative preference-mapping
rules that can be used to interpret the behavior shown in FI1G.
8. Inparticular, this table is aimed at determining whether the
user is satisfied with query B, which is a reformulation of
query A. First consider the relatively clear-cut case in which
the user performs the query reformulation A—B and then
clicks on an entry in the results for query B, but not on an entry



US 2012/0233140 Al

for query A. For this case (“case a”), it can be assumed that the
user is satisfied with the query B.
[0070] Next consider the case in which the user performs
the reformulation A—B, but clicks on entries in the results for
both queries A and B, corresponding to “case b.” A portion of
these users may like query B and a portion may dislike query
B. For this case, a parameter o can be used to indicate the
percentage of people who clicked on the results for query B
and actually liked query B.
[0071] Next, again consider the case in which a user per-
forms the reformation A—B, but this time does not click onan
entry for result B. For this case (“case ¢”), it can be assumed
that the user does not like query B, whether or not the user also
clicked on an entry for query A.
[0072] Next consider the case of users who did not perform
the alteration A—B. Among them, the users who did not click
on any entries for any results can be ignored (corresponding
to “case h”), as this behavior does not have any apparent
bearing on whether the users liked or disliked query B. Other
users may have clicked on entries for certain queries, as in the
case forusers who clicked on entries for query C. For this case
“case d”), it can be assumed that all of the users found what
they were looking for and therefore would dislike query B.
But this may be overly pessimistic because query B may be
equally as good as query C or better. For this case (“case d”),
aparameter 3 can be used to indicate the percentage of people
who clicked on the results for query C (or some other query)
and would dislike query B.
[0073] In summary, the number of users who vote for the
A—B reformulation can be expressed as a+ab. The number
of users who vote against the A—B reformulation can be
expressed as c+fd. The parameters (a, [3) control the prefer-
ence interpretations in the ambiguous scenarios described
above, and can be set to the default values of a=1 and §=0.
[0074] In addition to the above considerations, the users’
click behavior may include noise. In other words, the users
had certain search objectives when they submitted their
search queries. The users’ click behavior may contain
instances in which the users’ clicks are not related to satisfy-
ing those search objectives, and can thereby be considered
tangential to those search objectives. The label application
module 702 (of FIG. 7) can also perform operations to
account for these inadvertent instances.
[0075] For example, consider a first situation in which a
user clicks on an entry for query X. In the great majority of the
cases, this means that the user likes query X. Alternatively, the
user may have clicked on this entry by accident, or the user
may have clicked on this entry for some tangential reason that
is unrelated to his or her original search objective, or the user
may have clicked on this entry to then discover that the entry
is not actually related to satisfying his or her original search
objective, etc. To address this situation, the label application
module 702 can generate a corrected number of clicks for
query X as C,=max(0, C;~(14*1%)). This expression means
that the number of impressions for query X is multiplied by
some corrective percentage (e.g., 1% in this merely represen-
tative case). That result is subtracted from the uncorrected
number of clicks (Cy) to provide the corrected number of
clicks (unless the result is negative, upon which the number of
clicks is set to 0).
[0076] Considera second situation in which a user switches
from query A to query B. In many cases, this behavior indi-
cates that the user thinks that query B is a good reformulation
of query A. But in other cases, the user may simply wish to

Sep. 13,2012

switch to another topic (where query B would reflect that new
topic). Or this click may be accidental, or unsatisfying, etc. To
address this situation, the label application module 702 can
define, for each query pair A—B, the corrected number of
impressions 1,5 as max(0, I, z—0zl,), and the corrected
number of clicks C, z;=max(0, C, z~vz0.51,). In this expres-
sion, az=l;/1, , wherel,  refers to the total impression count,
and yz=Cz/15.

[0077] The above-described noise-correction provisions
are environment-specific. Other environments and applica-
tions may use other algorithms and parameter settings for
identifying and correcting the presence of noise in the pref-
erence information.

[0078] Advancing to FIG. 10, this figure shows a set of
seven illustrative context conditions that can be used to define
features for inclusion in the model 112. In each case, the
context condition identifies a context in which a transforma-
tion (S1—S2) takes place, involving changing a part (S1)ina
first query (q1) to another part (S2) in a second query (q2). To
repeat, the part S1 can include zero, one, or more query
components. Likewise, the part S2 can include zero, one, or
more query components. The context conditions described
here originate from the first search query ql, but, as stated
above, they can originate from any combination of sources.

[0079] A first context condition specifies that a specific
context component w (e.g., a word, a class, etc.) occurs any-
where in the search query ql. This may be referred to as a
non-structured or simple word context condition. A second
context condition specifies that a specific context component
w appears immediately before S1 in q1. FIG. 2 is an example
of this type of context condition. A third context condition
specifies that a specific context component w occurs imme-
diately after S1 in q1. FIG. 3 is an example of this type of
context condition. For the first through third context condi-
tions, q1 can be arbitrarily long. Further, the second and third
context conditions may be referred to as structured word
context conditions because they have some bearing on the
local structure of q1.

[0080] A fourth context condition specifies a length of S1
(or a length of ql), e.g., as having one, two, three, etc. query
components. A fifth context condition specifies that q1 con-
sists of only S1. A sixth context condition specifies that ql
consists of only a single context component w followed by
S1. And a seventh context condition specifies that q1 consists
of only S1 followed by a single context component w. The
fourth through seventh context conditions define overall-
structure context conditions, e.g., because these context con-
ditions have some bearing on the overall structure (e.g.,
length) of the search query ql. Further, the fourth through
seventh context conditions can be referred to as non-lexical-
ized context conditions because they apply without reference
to a specific context component (e.g., a specific word or
class). For example, the sixth context condition is considered
to be met for any context component w followed by S1. In
contrast, the first through third context conditions can be
referred to as lexicalized context conditions because they
apply to particular context components (e.g., specific words
or classes).

[0081] More generally, the above-described set of possible
context condition is environment-specific. Other environ-
ments and applications may use other sets of context condi-
tions, e.g., by specifying any type of structural information
regarding the search queries of any complexity, such as
N-gram information in the search queries, etc.



US 2012/0233140 Al

[0082] The model generation module 104 constructs fea-
tures with context conditions selected from the set of possible
context conditions shown in FIG. 10 (which can be expanded
at any time to encompass more context conditions). More
specifically, the model generation module 104 can construct
different types of features. A lexicalized feature corresponds
to any feature which involves the replacement of a part S1
with a part S2, wherein that modification is learned on the
basis of at least one query pair in a corpus of query reformu-
lations. A lexicalized feature can be expressed as (CC)
S1—=82. A lexicalized feature expressly specifies both the
parts S1 and S2.

[0083] Inatemplate feature, the parts S1 and S2 are related
by some transformation operation €, e.g., €(S1)=S2. The
operation E can be selected from a family of transformations,
such as stemming, selection of an antonym from an antonym
source, selection of a redirection entry from a redirection
source (such as the Wikipedia online encyclopedia), and so
on. In one application, template alterations can be used for
cases in which a word has not been seen in the training
information (e.g., query reformulations) but can still be
handled by, for example, a stemming algorithm that attempts
to convert a singular form of the word to a plural form, etc.
The model generation module 104 can determine whether a
template transformation E is present in a pair of queries (ql,
q2) by determining whether these queries contain parts S1
and S2 that can be related by €(S1)=S2. A template feature not
need expressly specify S2, since S2 is derivable from S1.
[0084] In certain implementations, the model generation
module 104 can define various constraints on the construction
of features. For example, as stated above, some environments
may be limited to context conditions that contain only one
context component. In another case, if S1 has zero query
components, then the context condition is constrained to con-
tain one of the structured word context conditions shown in
FIG. 10 (e.g., as specified by context conditions 2 or 3). In
another case, a template alteration is combinable only with
one of the structured word contexts (e.g., we, ew, as specified
in context conditions 2 or 3 in FIG. 10), or a constraint on a
word class of S1 (e.g., e(w)),), etc.

[0085] Advancing to FIG. 11, this figure provides addi-
tional details regarding the training module 708 introduced in
FIG. 7. The training module 708 includes a feature matching
module 1102 for identifying features that are present in a
corpus of, for example, reformulated query pairs (q1, q2) (or
other query combinations). To perform this function, the fea-
ture matching module 1102 draws from matching criteria
1104. The matching criteria 1104 informs the feature match-
ing module 1102 what patterns to look for in the query pairs.
This implementation is representative, not exhaustive; as
stated above, the training module 708 can also draw from
other sources in determining whether a particular search
query in question satisfies a context condition.

[0086] Forexample, the feature matching module 1102 can
identify a feature having a structured word context (such as
context conditions 2 or 3 in FIG. 10) by performing matching
against a pair of sequences, e.g., (WS1, S2) or (S1w, S2). The
feature matching module 1102 can identify a feature having a
simple word context (such as context condition 1 in FIG. 10)
by matching against a tuple, e.g., (w, S1, S2). The feature
matching module 1102 can identify a feature having a struc-
ture context (such as any context conditions 4, 5, 6, or 7 in
FIG.10) by matching against a tuple, e.g., (structured context,
S1, S2). The feature matching module 1102 can identify a

Sep. 13,2012

feature with a template alteration (e.g., we, ew, e(w), etc.) by
matching against a tuple, e.g., (w, €), (€, W), (ew), etc.
[0087] A parameter information generation module 1106
can generate weights and (optionally) levels of uncertainty
associated with the features (or combinations of features)
identified by the feature matching module 1102. The param-
eter information generation module 1106 can use different
techniques to perform this task depending on the type of
model that is being constructed, as will be clarified in Section
B. From a high level perspective, however, for the case of
individual features, the weights reflect the prevalence of the
detected features in the corpus of labeled query pairs. The
levels of uncertainty reflect the consistency at which the fea-
tures have been detected by the feature matching module
1102.

[0088] FIG. 12 shows additional details regarding the
CAQA module 116 introduced in FIG. 1. The CAQA module
116 includes a feature matching module 1202 which per-
forms a role that is similar to the feature matching module
1102 (used by the training module 708). Namely, at query
time, the feature matching module 1202 examines a search
query ql to determine whether it matches one or more fea-
tures, as defined by the matching criteria 1204. But here, the
feature matching module 1202 determines whether the search
query ql includes (or is otherwise associated with) at least
one context condition and at least one part S1 that matches at
least one feature; the part S2 of any matching feature is
supplied by the matching process itself, e.g., as explicitly
defined by the matching feature or as defined by a template
transformation E. As explained above, this process of identi-
fying matching features also identifies candidate alterations.
This is because a feature defines a manner of transforming the
part S1 in the search query q1 into a part S2 in the alteration
query g2 (to be generated).

[0089] A score determination module 1206 assigns a score
to each candidate alteration defined by the feature matching
module 1202. The score determination module 1206 can use
different techniques to compute this score, depending on the
type of model that is being used to express the features.
Generally speaking, in one implementation, each candidate
alteration may be associated with one or more features. And
each feature is associated with a weight and (optionally) a
level of uncertainty. The score determination module 1206
can generate the score for a candidate alteration by aggregat-
ing the individual weight(s) associated therewith, optionally
taking into consideration the levels of uncertainty associated
with the weight(s).

[0090] The score determination module 1206 can rank the
candidate alterations based on their scores and select one or
more highest-ranking alterations, referred to as recom-
mended alterations herein. In some cases, the score determi-
nation module 1206 can take a conservative approach by
discounting a weight by all or some of the level of uncertainty
associated with the weight. This may bias the score determi-
nation module 1206 away from selecting any candidate alter-
ation that is based on features (or combinations of features)
having high levels of uncertainty.

[0091] B. Illustrative Processes

[0092] FIGS. 13-16 show procedures that explain the
operation of the environment 100 of FIG. 1 in flowchart form.
Since the principles underlying the operation of the environ-
ment 100 have already been described in Section A, certain
operations will be addressed in summary fashion in this sec-
tion.



US 2012/0233140 Al

[0093] Starting with FIG. 13, this figure shows a procedure
1300 that explains one manner of operation of the model
generation module 104 of FIG. 1. In block 1302, the model
generation module 104 receives query reformulation infor-
mation that identifies query reformulations obtained from
users and/or any other source. In block 1304, the model
generation module 104 receives preference information. The
preference information provides data that can be mined to
determine the extent to which the users liked (or disliked) the
reformulated queries. In block 1306, the model generation
module 104 generates labeled reformulation information
based on the query reformulation information and the prefer-
ence information. Namely, that process may involve assign-
ing binary or multi-class tags to the reformulated queries
based on the preference information. In block 1308, the
model generation module 104 uses a machine learning tech-
nique to generate a model 112 based on the labeled reformu-
lation information created in block 1306. Block 1310 entails
installing the created model 112 in the search engine 102,
where it henceforth governs the operation of the CAQA mod-
ule 116.

[0094] As shown in block 1312, the process depicted in
FIG. 13 can be used to update a previously-created model that
is being used by the search engine 102. In this case, the
environment 100 shown in FIG. 1 can continuously or peri-
odically collect new user behavior information (e.g., from a
web log) and continuously or periodically update the model
112 to account for this new behavior information.

[0095] FIG. 14 shows a procedure 1400 which clarifies one
manner of performing the model-generating operation of
block 1308 of FIG. 13. This process is explained with respect
to operations performed on a representative query pair (ql,
q2), although, as described in Section A, this process can be
performed based on other sources of training information. In
block 1402, the model generation module 104 identifies the
query pair (ql, q2). In block 1404, the model generation
module 104 identifies the difference between ql and q2,
which generates the S1 and S2 parts described in Section A.
This process may involve tokenizing each of the queries (q1,
q2) by white spaces to identity their constituent query com-
ponents (e.g., words). The process may then involve remov-
ing any common prefix and any common postfix shared by
queries (ql, q2). In block 1406, the model generation module
104 identifies one or more features which describe the modi-
fication of S1—S2 in the presence of a one or more context
conditions. More specifically, block 1306 describes the
operations set forth above in the context of FIG. 11. In block
1408, the model generation module 104 generates (or
updates) parameter information based on the feature detected
in block 1406.

[0096] FIG. 15 describes a procedure 1500 which explains
the query-time operation of the environment 100, e.g., in
which the search engine 102 receives a new search query and
generates (if appropriate) one or more query alterations based
on this search query. In block 1502, the search engine 102
receives the search query. In block 1504, the search engine
102 uses the model 112 to identify one or more candidate
alterations that can be used to modity the search query. This
operation corresponds to the details provided above with
respect to FIG. 12. In block 1506, the search engine 102
selects one or more candidate alterations that have been iden-
tified in block 1504, e.g., based on scores associated with the
candidate alterations. Alternatively, none of the candidate
alterations may be strong candidates, e.g., because their fea-

Sep. 13,2012

tures have low weights and/or because they have high levels
of uncertainty associated therewith. If so, in block 1508, the
search engine 102 may decline to perform any alteration of
the original search query. Inblock 1510, assuming that at least
one viable recommended alteration has been identified, the
search engine 102 can automatically forward the recom-
mended alteration(s) to the searching functionality 108.
Alternatively, or in addition, the search engine 102 can
present the recommended alteration(s) to the user and invite
the user to select one of these alterations. At least one of the
recommended alterations may correspond to the original
search query, if, in fact, no alteration is recommended as one
option.

[0097] Aspects of the operations described in FIGS. 13-16
can be implemented in the context of different model-genera-
tion frameworks, such as a Naive Bayes framework, a logistic
regression framework, a confidence-weighted classification
framework, and so on. The remaining part of this section
provides additional details on various environment-specific
implementations of the principles described above. These
examples are representative, not exhaustive or limiting.
[0098] Consider first a Naive Bayes approach. In this
framework, the model generation module 104 can generate
weights based on two probabilities. The first probability is the
probability that a feature f is matched and an alteration is
considered good, or P(f is matchedlan alteration is good)
=N, /N,. The second probability is the probability that a
feature f'is matched and an alteration is considered bad, or P(f
is matchedlan alteration is bad)=N,. /N_. Here, N, (N ) isthe
number of times fhas been matched in reformulated queries
that are considered good (bad, respectively). N, (N_) corre-
sponds to the total number of good (bad, respectively) refor-
mulations.

[0099] FIG. 16 shows one illustrative routine for generating
the above-stated parameter information, e.g., N,, N_, {Nf+,
N, }. In section 1602 of the routine shown in FIG. 16, the
model generation module 104 computes an indication of a
total number of clicks C,,. In section 1604, the model gen-
eration module 104 computes N, and N_ for each query q2 in
a set of q2’s ({q2}) that can be paired with a query ql. In
section 1606, the model generation module 104 computes N,
and N._for each feature f matched in a query pair (q1, g2). As
shown in FIG. 16, N, is formed by determining the number
of times users clicked on q2 after issuing ql. For N, q2 is
considered a bad alteration under two conditions. Fither (a) a
user clicks on q1 but never issues q2 (e.g., because the user is
presumably satisfied with q1 alone), or (b) the user issues q2,
but does not click on any results for 2. Thus, the total number
of bad alterations is a sum with two parts: (a) C,,,~C,,,
(which is all the clicks for q1 that are left from the total after
the clicks from q2 are subtracted), and (b) the total of all q2
results that were not clicked, i.e. 1 ,,,~C,,,,. This yields the
factor of -2C,,, in FIG. 16.

[0100] In the query-time phase, a Naive Bayes model uses
a Bayesian rule to model P(yIx), where x is an input sample
represented as a vector of features, and y is a class label of this
sample. That is:

Plx| »)P(y)

e



US 2012/0233140 Al

[0101] Foratwo-class classification problem, the probabil-
ity can be expressed using P(Y=1Ix)=o (result(x)), where o is
the logit function o(t)=1/(1+e™"), and result(x) is defined as:

PY=1,%
result(x) = logm
PY=1) P =LY =1)
=1 i
Cpr =0) +) % P, =117 =0)

= b+z Xiw;.
i

[0102] Inthe context of the present application, the vector x
corresponds to a particular candidate alteration having a plu-
rality of features (X,) associated therewith and a plurality of
corresponding weights (w,). To reduce the complexity of
these computations, the model generation module 104 can
retain only a prescribed number of the most highest-weighted
features, removing the remainder. In another application, the
analysis described above can be used to assess the risk of
altering a query. Here, the vector X can represents the query
per se (where no translation rules are applied). In this case, the
term weights represent the risk of altering different terms in
the query to anything else.

[0103] Consider next the case in which the model genera-
tion module 104 uses a logistic regression technique to gen-
erate the model 112. Background information on one logistic
regression technique can be found, for instance, in Andrew et
al., “Scalable Training of L'-Regularized Log-linear Mod-
els,” Proceedings of the 24th International conference on
Machine Learning, 2007, pp. 33-40. In this approach, the
model generation module 104 can perform L1-regularization
to produce sparse solutions, thus focusing on features that are
most discriminative.

[0104] Consider next the use of a confidence-weighted lin-
ear classification approach. Background on this technique
can be found in Dredze, et al., “Confidence-Weighted Linear
Classification,” Proceedings of the 25th International Con-
ference om Machine Learning, 2008, pp. 264-271, and
Dredze, et al., “Active Learning with Confidence,” Proceed-
ings of the 46th Annual Meeting of the Association for Com-
putational Linguistics on Human Language Technologies,
2008, pp. 233-236.

[0105] In this case, the model generation module 104 gen-
erates the model 112 based on feature weights in conjunction
with variance. More specifically, the model generation mod-
ule 104 generates the model 112 using an iterative on-line
approach. In this process, the model generation module 104
learns the weights and variances with respect to a probability
threshold 1. That probability threshold 1 characterizes the
probability of misclassification, given that the decision
boundary is viewed as a random variable with a mean pand a
covariance 2. Without limitation, in one case, the model gen-
eration module 104 can use a probability threshold of(=0.90.
The outcome of this on-line process is a model 112 which
provides a distribution over alter/no-alter decision bound-
aries. This allows the search engine 102 to quantity the clas-
sification uncertainty of any particular prediction.

Sep. 13,2012

[0106] Inone approach, the model generation module 104
can define a variance-adjusted feature weight of:

K
s, K 2
W =p= g0t

[0107] This adjusted feature weight trades off mean and
variance. It can be considered as a conservative estimate of
the true feature weight p®*” under uncertainty described by
o?. In one non-limiting case, K is set to 1.

[0108] These examples are representative, not exhaustive.
The model generation module 104 can use other machine
learning techniques to generate the model 112.

[0109] C. Representative Processing Functionality

[0110] FIG. 17 sets forthillustrative electrical data process-
ing functionality 1700 (also referred to herein as computing
functionality) that can be used to implement any aspect of the
functions described above. For example, the processing func-
tionality 1700 can be used to implement any aspect of the
search engine 102 and/or model generation module 104 of
FIG. 1, e.g., as implemented in the embodiment of FIG. 6, or
in some other embodiment. In one case, the processing func-
tionality 1700 may correspond to any type of computing
device that includes one or more processing devices. In all
cases, the electrical data processing functionality 1700 rep-
resents one or more physical and tangible processing mecha-
nisms.

[0111] The processing functionality 1700 can include vola-
tile and non-volatile memory, such as RAM 1702 and ROM
1704, as well as one or more processing devices 1706 (e.g.,
one or more CPUs, and/or one or more GPUs, etc.). The
processing functionality 1700 also optionally includes vari-
ous media devices 1708, such as a hard disk module, an
optical disk module, and so forth. The processing function-
ality 1700 can perform various operations identified above
when the processing device(s) 1706 executes instructions that
are maintained by memory (e.g., RAM 1702, ROM 1704, or
elsewhere).

[0112] More generally, instructions and other information
can be stored on any computer readable medium 1710,
including, but not limited to, static memory storage devices,
magnetic storage devices, optical storage devices, and so on.
The term computer readable medium also encompasses plu-
ral storage devices. In all cases, the computer readable
medium 1710 represents some form of physical and tangible
entity.

[0113] The processing functionality 1700 also includes an
input/output module 1712 for receiving various inputs (via
input modules 1714), and for providing various outputs (via
output modules). One particular output mechanism may
include a presentation module 1716 and an associated graphi-
cal user interface (GUI) 1718. The processing functionality
1700 can also include one or more network interfaces 1720
for exchanging data with other devices via one or more com-
munication conduits 1722. One or more communication
buses 1724 communicatively couple the above-described
components together.

[0114] The communication conduit(s) 1722 can be imple-
mented in any manner, e.g., by a local area network, a wide
area network (e.g., the Internet), etc., or any combination
thereof. The communication conduit(s) 1722 can include any
combination of hardwired links, wireless links, routers, gate-



US 2012/0233140 Al

way functionality, name servers, etc., governed by any pro-
tocol or combination of protocols.

[0115] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe-
cific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

What is claimed is:

1. A physical and tangible computer readable medium for
storing computer readable instructions, the computer read-
able instructions providing a model generation module when
executed by one or more processing devices, the computer
readable instructions comprising:

logic configured to receive query reformulation informa-

tion that describes query reformulations made by at least
one agent,

logic configured to receive preference information which

indicates behavior performed by users that pertains to
the query reformulations;

logic configured to generate labeled reformulation infor-

mation based on the query reformulation information
and the preference information, the labeled reformula-
tion information indicating an extent to which the query
reformulations were deemed satisfactory by the users in
fulfilling search objectives of the users; and

logic configured to use a machine learning technique to

generate a model based on the labeled reformulation
information, the model providing functionality, for use
by a search engine, at query time, for mapping at least
some search queries to query alterations,

the model comprising a plurality of features having

weights associated therewith, each feature defining a
rule for altering a search query in a defined manner when
a context condition, specified by the rule, is deemed to
apply to the search query.

2. The computer readable medium of claim 1, wherein:

said at least one agent comprises at least one user, or a

query alteration module, or acombination of said at least
one user and the query alteration module;

the preference information comprises implicit preference

information, or explicit preference information, or a
combination of implicit and explicit preference informa-
tion;

the behavior performed by the users comprises individual

behavior, or aggregate behavior, or a combination of
individual behavior and aggregate behavior; and

each search query or search query group maps to zero, one,

or more query alterations.

3. The computer readable medium of claim 1, wherein the
preference information identifies selections of items by the
users after receiving search results, the search results being
generated in response to the query reformulations.

4. The computer readable medium of claim 1, further
including logic configured to remove noise from the prefer-
ence information, the noise being associated with tangent
selections made by the users, wherein a tangent selection is a
selection that does not contribute to satisfying a search objec-
tive associated with a search query.

5. The computer readable medium of claim 1, wherein said
logic configured to generate the model comprises:

logic configured to identify a plurality of query combina-

tions in the reformulated queries;

Sep. 13,2012

logic configured to identify features associated with the

query combinations; and

logic configured to generate parameter information based

on the features that have been identified.

6. The computer readable medium of claim 1, wherein each
context condition of each feature is selected from a set of
possible context conditions, and wherein each context condi-
tion includes a combination of one or more context compo-
nents.

7. The computer readable medium of claim 6, wherein at
least one type of context condition conveys, at least in part, an
inclusion of at least one context component within a query ql
of'a query pair (q1, q2).

8. The computer readable medium of claim 6, wherein at
least one type of context condition conveys, at least in part,
structural information regarding a query ql of a query pair
(q1. 92).

9. The computer readable medium of claim 1, further
including uncertainty information associated with individual
features, or any combinations of features, or a combination of
individual features and any combinations of features.

10. The computer readable medium of claim 1, wherein, in
one environment, each weight is diminished based on the
level of uncertainty associated therewith, to thereby adopt a
conservative interpretation of the weight.

11. The computer readable medium of claim 1, wherein
said logic configured to generate a model is configured to
generate a logistic regression model.

12. The computer readable medium of claim 1, wherein
said logic configured to generate a model is configured to
generate a confidence-weighted classification model.

13. A context-aware query alteration module, implemented
by a physical and tangible search engine, comprising:

logic configured to receive a search query;

logic configured to identify at least one candidate alteration

of the search query, each candidate alteration having a
score associated therewith; and

logic configured to generate at least one recommended

alteration of the search query, selected from among said
at least one candidate alteration, based on the score
associated with each candidate alteration,

each candidate alteration matching at least one feature in a

set of features specified by a model, each feature defin-
ing a rule for altering the search query in a defined
manner when a context condition, specified by the rule,
is deemed to apply to the search query.

14. The context-aware query alteration module of claim 13,
wherein features specified by the model have weights asso-
ciated therewith, and wherein each score of each candidate
alteration is constructed based on at least one weight that is
associated with the candidate alteration.

15. The context-aware query alteration module of claim 13,
further including uncertainty information associated with
individual features of the model, or any combinations of
features, or a combination of individual features and any
combinations of features.

16. The context-aware query alteration module of claim 13,
further comprising logic configured to automatically apply
said at least one recommended alteration to searching func-
tionality provided by the search engine.

17. The context-aware query alteration module of claim 13,
further comprising logic configured to suggest said at least
one recommended alteration to a user who submitted the
search query.



US 2012/0233140 Al
12

18. The context-aware query alteration module of claim 13,
wherein the context-aware query alteration module is config-
ured to supplement an operation of other alteration function-
ality provided by the search engine.

19. A method, implemented by physical and tangible com-
puting functionality, for generating and applying a model for
use by a search engine, comprising:
receiving query reformulation information that describes
query reformulations made by at least one agent;

receiving preference information which indicates items
that have been selected by users in response to the query
reformulations;

generating labeled reformulation information using a set of

preference-mapping rules, based on the query reformu-
lation information and the preference information, the
labeled reformulation information indicating an extent

Sep. 13,2012

to which query reformulations were deemed satisfactory
by the users in fulfilling search objectives of the users;
using a machine learning technique to generate a model
based on the labeled reformulation information, the
model providing functionality, for use by a search
engine, at query time, for mapping search queries to
query alterations, the model comprising a plurality of
features having weights associated therewith, each fea-
ture defining a rule for altering a search query in a
defined manner when a context condition, specified by
the rule, is deemed to apply to the search query; and
installing the model in the search engine.

20. The method of claim 19, wherein each context condi-
tion of each feature is selected from a set of possible context
conditions, and wherein each context condition includes a
combination of one or more context components.

sk sk sk sk sk



