
US 20120233140Al

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0233140 A1

Collins-Thompson et al. (43) Pub. Date: Sep. 13, 2012

(54)

(75)

(73)

(21)

(22)

(51)

CONTEXT-AWARE QUERY ALTERATION

Inventors: Kevyn B. Collins-Thompson,
Seattle, WA (US); Ni Lao,
Pittsburgh, PA (US)

Assignee: Microsoft Corporation, Redmond,
WA (US)

Appl. No.: 13/043,500

Filed: Mar. 9, 2011

Publication Classi?cation

Int. Cl.
G06F 1 7/30 (2006.01)

(52) US. Cl. 707/706; 707/748; 707/E17.108;
707/E17.014

(57)
A model generation module is described herein for using a
machine learning technique to generate a model for use by a
search engine. The model assists the search engine in gener
ating alterations of search queries, so as to improve the rel
evance and performance of the search queries. The model
includes a plurality of features having Weights and levels of
uncertainty associated thereWith, Where each feature de?nes a
rule for altering a search query in a de?ned manner When a
context condition, speci?ed by the rule, is present. The model
generation module generates the model based on user behav
ior information, including query reformulation information
and user preference information. The query reformulation
information indicates query reformulations made by at least
one agent (such as users). The preference information indi
cates at extent to Which the users Were satis?ed With the query
reformulations.

ABSTRACT

[SEARCH ENGINE
ORIGINAL 102
SEARCH —

QUERY ’

—|—> QUERY ALTERATION MODULE
REFORIvI- E
ULATED I __________ __\

QUERY(|ES) I OPTIONAL I
Q ‘ CONTEXT-AWARE QUERY : OTHER :

4 ALTERATION (CAQA) MODULE l ALTERATION :
I‘ ‘ (E.G., SEE FIG. 12) | FUNCTIONAL'TY I

OPTIONAL m i i
QUERY ' ’

SUGGEsT- MODEL
IONs m

k ALTERATION

REsOURcE(s)
Q

QUERY ALTERATION(s)
V

/ SEARCHING FUNCTIONALITY

SEARcH \ w

REsULTs

110
OTHER
SOURCES _ TRAINING INFORMATION:

OF TRAINING (1) QUERY REFORMULATION INFORMATION
INFORMATION (2) PREFERENCE INFORMATION

(3) ETC.
114

V

MODEL GENERATION MODULE
(E.G., SEE FIG. 7)
M

100 J

Patent Application Publication Sep. 13, 2012 Sheet 1 0f 13 US 2012/0233140 A1

‘

[SEARCH ENGINE
ORIGINAL I02
SEARCH —

QUERY '

—|—> QUERY ALTERATION MODULE
REFORM- m
ULATED I __________ __I

QUERY(IEs) I OPTIONAL I
% CONTEXT-AWARE QUERY I OTHER I

II 4 ALTERATION (CAQA) MODULE I ALTERATION I
‘ (E-G-I SEE F'G- 12) I FUNCTIONALITY I

OPTIONAL m : I
QUERY ‘ ’

SUGGEsT- MODEL
IONS m

k ALTERATION

REsOURCE(s)
Q

QUERY ALTERATION(S)

r I SEARCHING FUNCTIONALITY
SEARCH \ L m INDEX
REsULTs

I, 110

OTHER
SOURCES _ TRAINING INFORMATION:

OF TRAINING (1) QUERY REFORMULATION INFORMATION
INFORMATION (2) PREFERENCE INFORMATION

(3) ETC.
114

\ J

V

MODEL GENERATION MODULE
(E.G., SEE FIG. 7)
M

10°” FIG. 1

Patent Application Publication Sep. 13, 2012 Sheet 2 0f 13 US 2012/0233140 A1

{class: Domicile} ILLUSTRATIVE q
CONTEXT CONDITION //

//

(11 (Original Query): Ski Cabin Rentals

<12 (Reformulated Query): Ski House Rentals —l

RULE X

2 (FEATURE X)

ANOTHER ILLUSTRATIVE CONTEXT CONDITION

r—%

(11 (Original Queryli Ski Cabin Rentals

I
<12 (Reformulated Query): Ski House Rentals 1

RULE Y

3 (FEATURE Y)

ILLUSTRATIVE CONTEXT CONDITION

r—H

q1 (Original Query): Alaska CI'UISG Cabin

I
q2 (Reformulated Query): Alaska Cruise Room —l

RULE Z

_ 4 (FEATURE Z)

Patent Application Publication Sep. 13, 2012 Sheet 3 0f 13 US 2012/0233140 A1

qI (Search Query): Caribbean Cruise Cabin

I
MATCHED AGAINST A SET OF TX, WEIGHT, UNCERTAINTY
ALL POSSIBLE FEATURES fY, WEIGHT, UNCERTAINTY
SPECIFIED BY THE MODEL fZ, WEIGHT, UNCERTAINTY

I
CANDIDATE ALTERATION 1, SCORE 1
CANDIDATE ALTERATION 2, SCORE 2
CANDIDATE ALTERATION 3, ScoRE 3

I
I

RECOMMENDED
ALTERATION(S), E.G.:

Caribbean Cruise (Cabin Or Room)

FIG. 5

Patent Application Publication Sep. 13, 2012 Sheet 4 0f 13 US 2012/0233140 A1

[-600

r_ f—

LOCAL REMOTE
COMPUTING COMPUTING

FUNCTIONALITY COMMUN'CAT'ON FUNCTIONALITY
CONDU|T(S) w

— a

I’ _______ “7

I BROWSER I SEARCH

: FUNCTIONALITY: ENGINE

I w I i , 6;? m
MODEL

GENERATION
FUNCTIONALITY

m

*1

%—J
FOR EXAMPLEI

FIG. 6 mg $3

Patent Application Publication Sep. 13, 2012 Sheet 5 0f 13 US 2012/0233140 A1

QUERY REFORMULATION
INFORMATION PREFERENCE OTHER

(EG REFORMULATED INFORMATION TRAINING
I I, QUERIES) (E-G" CL'CKS) INFORMATION

’ ‘

LABEL APPLICATION MODULE

m

: LABELING RULES l
: (E.G., SEE FIGs. 8 AND 9) I
I l

l

LABE LED
REFORMULATION
INFORMATION

704

V

TRAINING MODULE (SEE FIG. 11)
M

FOR EXAMPLE (BAYESIAN, LOGISTIC
REGREssION, CONFIDENCE-WEIGHTED, ETC.)

MODEL (PARAMETER INFORMATION)
M

(1) FEATURE WEIGHTS
(2) OPTIONAL FEATURE UNCERTAINTY

INFORMATION

MODEL GENERATION MODULE
m

FIG. 7

Patent Application Publication Sep. 13, 2012 Sheet 6 0f 13 US 2012/0233140 A1

CLICK/NO CLICK
B

CLICK/NO CLICK

CLICK/No CLICK _””,',””"> C
A

\‘\> DCLlCK/NO CLICK
END

FIG. 8

ILLUSTRATIVE

RuLEs IN ONE
IMPLEMENTATION

CLICK No CLICK

CUCK Yes (?): Case b Yes: Case a
REFORMULATION B

No CLICK No: Case 0 No: Case c

CLICK N0 (?): Case d No (?): Case d
REFORMULATION C

No CLICK Case h Case h

ABANDONED Case h Case h

FIG. 9

Patent Application Publication Sep. 13, 2012 Sheet 7 0f 13 US 2012/0233140 A1

NOTAT|ON CONTEXT CONDITION DEFINITION
,

1

A specific context component w
(W) S1982 appears anywhere in q1

2
< A specific context component w

(W_) S1932 appears immediately before S1 in q1

3

A specific context component w
(1081982 appears immediately after S1 in q1

\

f 4

<N> S1982 The length of S1 (or q1) is N, e.g., 1, 2,
or more

5

<1> S19S2 q1 only consists of S1

< 6

q1 consists of a single context
<WS> S1982 component followed by S1

7

<SW> S1982 q1 consists of S1 followed by a single
context component

\

FIG. 10

Patent Application Publication Sep. 13, 2012 Sheet 8 0f 13 US 2012/0233140 A1

TRAINING MODULE
M

r \

FEATURE MATCHING
MODULE

1 102 PARAMETER
(_______ __\ INFORMATION

I M I GENERATION

: CATOHING : MODULE
I RITERIA I 1 106
I 1104 ' —

I- ___ — ___ _ -J

\ J

FIG. 11

CONTEXT-AWARE QUERY ALTERATION (CAQA) MODULE
m

FEATURE MATCHING
MODULE SCORE
1202 DETERMINATION

, ------- --\ MODULE

: MATCHING : w
: CRITERIA : \ J
I m '
I_ ______ __J' r v ‘

* MODEL

m
(1) FEATURE WEIGHTS
(2) OPTIONAL FEATURE

UNCERTAINTY
INFORMATION

FIG. 12

Patent Application Publication Sep. 13, 2012 Sheet 9 0f 13 US 2012/0233140 A1

I START I

>
r

V

RECEIVE QUERY REFORMULATION INFORMATION
1302

V

I
I

I
1 304

V

GENERATE LABELED REFORMULATION INFORMATION BASED ON
THE QUERY REFORMULATION INFORMATION AND THE

PREFERENCE |NFORMAT|ON

RECEIVE PREFERENCE INFORMATION 1

1306

V
f \
GENERATE A MODEL BASED ON THE LABELED REFORMULATION

INFORMATION (OR UPDATE A CURRENT MODEL)
(E.G., SEE FIG. 14)

1308 \ — J

v \

INSTALL THE (ORIGINAL OR UPDATED) MODEL IN A SEARCH
ENGINE
1310

\ J

UPDATING OF
MODEL END
1312

FIG. 13

Patent Application Publication Sep. 13, 2012 Sheet 10 0f 13 US 2012/0233140 A1

FOR QUERY PAIR (q1, q2)

(START I

V

IDENTIFY A QUERY COMBINATION, E.G., (q1, q2)
‘I402

V

IDENTIFY DIFFERENCE BETvvEEN q1 AND q2
1404

V

q1 TO q2
1406

V

GENERATE (E.G., UPDATE) PARAMETER INFORMATION
BASED ON THE IDENTIFIED FEATURE(S)

1408

g/QQQ [IDENTIFY FEATURE(S) WHICH DESCRIBE MODIFICATION OF

END

FIG. 14

Patent Application Publication Sep. 13, 2012 Sheet 11 0f 13 US 2012/0233140 A1

K- 1500

(START)

V

RECEIVE A SEARCH QUERY q1
1502

IDENTIFY CANDIDATE ALTERATION(S) ASSOCIATED WITH THE
SEARCH QUERY (IF ANY) BY MATCHING THE SEARCH

QUERY AGAINST A SET OF POSSIBLE FEATURES DEFINED
BY A MODEL, EACH CANDIDATE ALTERATION HAVING A

SCORE ASSOCIATED THEREWITH

M

SELECTED FROM AMONG THE CANDIDATE ALTERATION(S),
BASED ON THE IDENTIFIED SCORE(S)

1506

V

[IDENTIFY RECOMMENDED ALTERATION(S) (IF ANY)

[APPLY OR SUGGEST THE RECOMMENDED ALTERATION(S)
1510

V

END v

ALTERNATIvELY,
NO ALTERATION

IS VIABLE

FIG. 15 w

Patent Application Publication Sep. 13, 2012 Sheet 12 0f 13 US 2012/0233140 A1

input data = {(q1, {q2})}

foreach (q1, {q2}) in data

Ctot : Cq1 + zqgcqtqg } foreach reformulation q2 in {q2}

foreach feature f matched in (q1, q2)

end for

FIG. 16

Patent Application Publication Sep. 13, 2012 Sheet 13 0f 13 US 2012/0233140 A1

PRESENTATION
MODULE

COMMUNICATION

CONDUIT(S)
PROCESSING 1722

DEVICE(S)
1706

NETWORK
HO INTER
1712 < M FACE(S)

M ii A \/

SYSTEM MEDIA

RAM 5%“: DEV|CE(S) - - -
w — 1708

(J 3 k W \j/ 1

INPUT C R
MODULHS) OMPUTER- EADABLE

1714 MEDIUM EXAMPLES
1710

FIG. 17

US 2012/0233140 A1

CONTEXT-AWARE QUERY ALTERATION

BACKGROUND

[0001] A user’s search query may not be fully successful in
retrieving relevant documents. This is because the search
query may use terms that are not contained in or otherwise

associated with the relevant documents. To address this situ
ation, search engines commonly provide an alteration module
which automatically modi?es a search query to make it more
effective in retrieving the relevant documents. Such modi?
cation can entail adding term(s) to the original search query,
removing term(s) from the original search query, replacing
term(s) in the original search query with other term(s), cor
recting term(s) in the original search query, and so on. More
speci?cally, such modi?cation may encompass spelling cor
rection, selective stemming, acronym normalization, query
expansion (e.g., by adding synonyms, etc.), and so on. In one
case, a human agent may manually create the rules which
govern the manner of operation of the alteration module.

[0002] On average, an alteration module can be expected to
improve the ability of a search engine to retrieve relevant
documents. However, the alteration module may suffer from
other shortcomings. In some cases, for instance, the alteration
module may incorrectly interpret a term in the original search
query. This results in the modi?cation of the original search
query in a manner that signi?cantly subverts the intended
meaning of the original search query. Based on this altered
query, the search engine may identify a set of documents
which is completely irrelevant to the user’s search objectives.
Such a dramatic instance of poor performance can bias a user
against future use of the search engine, even though the alter
ation module is, on average, improving the performance of
the search engine. Moreover, it may be a time-intensive and
burdensome task for developers of the search engine to manu
ally specify the rules which govern the operation of the alter
ation module.

[0003] The challenges noted above are presented by way of
example, not limitation. Search engine technology may suffer
from yet other shortcomings.

SUMMARY

[0004] A model generation module is described herein for
using a machine-leaming technique to generate a model for
use by a search engine, where that model assists the search
engine in altering search queries. According to one illustra
tive implementation, the model generation module operates
by receiving query reformulation information that describes
query reforrnulations made by at least one agent (such as a
plurality of users). The model generation module also
receives preference information which indicates behavior
performed by the users that is responsive to the query refor
mulations. For example, the preference information may
identify user selections of items within search results, where
those search results are generated in response to the query
reformulations. The model generation module then generates
labeled reformulation information based on the query refor
mulation information and the preference information. The
labeled reformulation information includes tags which indi
cate an extent to which the query reforrnulations were deemed
satisfactory by the users. The model generation module then
generates a model based on the labeled reformulation infor

Sep. 13,2012

mation. The model provides functionality, for use by the
search engine, at query time, for mapping search queries to
query alterations.
[0005] More speci?cally, the model comprises a plurality
of features having weights associated therewith. Each feature
de?nes a rule for altering a search query in a de?ned manner
when a context condition, speci?ed by the feature, is deemed
to apply to the search query. Optionally, each feature (and/or
combination of features) may also have a level of uncertainty
associated therewith.
[0006] The search engine can operate in the following man
ner at query time, e.g., once the above-described model is
installed in the search engine. The search engine begins by
receiving a search query. The search engine then uses the
model to identify at least one candidate alteration of the
search query (if there is, in fact, at least one candidate alter
ation). Each candidate alteration matches at least one feature
in a set of features speci?ed by the model. The search engine
then generates at least one recommended alteration of the
search query (if possible), selected from among the candidate
alteration(s), e.g., based on score(s) associated with the can
didate alteration(s).
[0007] As will be described herein, the model improves the
ability of the search engine to generate relevant search results.
In certain implementations, the search engine can also be
con?gured to conservatively discount individual features
and/or combinations of features that have high levels of
uncertainty associated therewith. This provision operates to
further reduce the risk that the search engine will select incor
rect alterations of search queries.
[0008] The above approach can be manifested in various
types of systems, components, methods, computer readable
media, data structures, articles of manufacture, and so on.
[0009] This Summary is provided to introduce a selection
of concepts in a simpli?ed form; these concepts are further
described below in the Detailed Description. This Summary
is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used to
limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 shows an environment that includes a search
engine and a model generation module. The model generation
module uses a machine learning technique to generate a
model for use by the search engine in generating query alter
ations of search queries.
[0011] FIGS. 2-5 together provide a simpli?ed example of
one manner of operation of the environment shown in FIG. 1.
[0012] FIG. 6 shows one implementation of the environ
ment shown in FIG. 1.
[0013] FIG. 7 shows one implementation of the model gen
eration module shown in FIG. 1.
[0014] FIGS. 8 and 9 provide illustrative details regarding
one manner of operation of a label application module pro
vided by the model generation module of FIG. 7.
[0015] FIG. 10 is a table that shows an illustrative set of
context conditions associated with model features.
[0016] FIG. 11 shows one implementation of a training
module provided by the model generation module of FIG. 7.
[0017] FIG. 12 shows one implementation of a context
aware query alteration module provided by the search engine
of FIG. 1.
[0018] FIG. 13 is a ?owchart that shows one manner of
operation of the model generation module of FIG. 1.

US 2012/0233140 A1

[0019] FIG. 14 is a ?owchart that shows additional details
regarding the operation of the model generation module of
FIG. 1.
[0020] FIG. 15 is a ?owchart that shows one manner of
operation of the search engine shown in FIG. 1.
[0021] FIG. 16 is a high-level representation of a procedure
for generating parameter information, used to produce a
Naive Bayes model.
[0022] FIG. 17 shows illustrative processing functionality
that can be used to implement any aspect of the features
shown in the foregoing drawings.
[0023] The same numbers are used throughout the disclo
sure and ?gures to reference like components and features.
Series 100 numbers refer to features originally found in FIG.
1, series 200 numbers refer to features originally found in
FIG. 2, series 300 numbers refer to features originally found
in FIG. 3, and so on.

DETAILED DESCRIPTION

[0024] This disclosure is organized as follows. Section A
describes an illustrative search engine, including a query
alteration module for altering search queries to make them
more relevant. Section A also describes a model generation
module for using a machine learning technique to generate a
model for use by the query alteration module. Section B
describes illustrative methods which explain the operation of
the search engine and model generation module of SectionA.
Section C describes illustrative processing functionality that
can be used to implement any aspect of the features described
in Sections A and B.
[0025] As a preliminary matter, some of the ?gures
describe concepts in the context of one or more structural
components, variously referred to as functionality, modules,
features, elements, etc. The various components shown in the
?gures can be implemented in any manner by any physical
and tangible mechanisms (for instance, by software, hard
ware, ?rmware, etc., and/ or any combination thereof). In one
case, the illustrated separation of various components in the
?gures into distinct units may re?ect the use of corresponding
distinct physical and tangible components in an actual imple
mentation. Alternatively, or in addition, any single compo
nent illustrated in the ?gures may be implemented by plural
actual physical components. Alternatively, or in addition, the
depiction of any two or more separate components in the
?gures may re?ect different functions performed by a single
actual physical component. FIG. 17, to be discussed in turn,
provides additional details regarding one illustrative physical
implementation of the functions shown in the ?gures.
[0026] Other ?gures describe the concepts in ?owchart
form. In this form, certain operations are described as consti
tuting distinct blocks performed in a certain order. Such
implementations are illustrative and non-limiting. Certain
blocks described herein can be grouped together and per
formed in a single operation, certain blocks can be broken
apart into plural component blocks, and certain blocks can be
performed in an order that differs from that which is illus
trated herein (including a parallel manner of performing the
blocks). The blocks shown in the ?owcharts can be imple
mented in any manner by any physical and tangible mecha
nisms (for instance, by software, hardware, ?rmware, etc.,
and/ or any combination thereof).
[0027] As to terminology, the phrase “con?gured to”
encompasses any way that any kind of physical and tangible
functionality can be constructed to perform an identi?ed

Sep. 13,2012

operation. The functionality can be con?gured to perform an
operation using, for instance, software, hardware, ?rmware,
etc., and/or any combination thereof.
[0028] The term “logic” encompasses any physical and
tangible functionality for performing a task. For instance,
each operation illustrated in the ?owcharts corresponds to a
logic component for performing that operation. An operation
can be performed using, for instance, software, hardware,
?rmware, etc., and/or any combination thereof. When imple
mented by a computing system, a logic component represents
an electrical component that is a physical part of the comput
ing system, however implemented.
[0029] The following explanation may identify one or more
features as “optional.” This type of statement is not to be
interpreted as an exhaustive indication of features that may be
considered optional; that is, other features can be considered
as optional, although not expressly identi?ed in the text.
Similarly, the explanation may indicate that one or more
features can be implemented in the plural (that is, by provid
ing more than one of the features). This statement is not be
interpreted as an exhaustive indication of features that can be
duplicated. Finally, the terms “exemplary” or “illustrative”
refer to one implementation among potentially many imple
mentations.
[003 0] A. Illustrative Search Engine and Model Generation
Module
[0031] FIG. 1 shows an environment 100 which includes a
search engine 102 together with a model generation module
104. At query time, the search engine 102 receives a search
query from a user. In response, the search engine 102 identi
?es documents that may be relevant to the search query. To
perform this task, the search engine 102 includes a query
alteration module 106. If deemed appropriate, the query alter
ation module 106 transforms the search query into one or
more alternative version of the search query, each referred to
herein as a query alteration. Searching functionality 108 then
uses the query alteration(s) to perform a search over a search
index, e.g., as provided in one or more data stores 110. The
searching functionality 108 can then provide the search
results to the user. The search results may comprise a list of
text snippets and resource identi?ers (e. g., URLs) associated
with the documents (e. g., web pages) that have been identi?ed
as relevant to search query. The purpose of the model genera
tion module 104 is to use a machine learning technique to
generate a model 112. The model 112, once installed in the
search engine 102, enables the query alteration module 106 to
transform the original search query into the query alteration.
[0032] In many of the examples presented herein, the
search engine 102 may comprise functionality for searching a
distributed repository of resources that can be accessed via a
network, such as the Internet. However, the term search
engine encompasses any functionality for retrieving struc
tured or unstructured information in any context from any
source or sources. For example, the search engine 102 may
comprise retrieval functionality for retrieving information
from an unstructured database.

[0033] The above-summarized components of the environ
ment 100 will be explained below in turn. To begin with, FIG.
1 indicates that the model generation module 104 generates
the model 112 based on training information which may be
stored in one or more data stores 114. For example, the data
store(s) 114 may represent a web log. The training informa
tion may include user behavior information. The user behav
ior information, in turn, includes at least two components:

US 2012/0233140 A1

query reformulation information and preference information.
The query reformulation information identi?es queries refor
mulations made by at least one agent in an effort to retrieve
relevant documents, such as query reformulations created by
users, and/or query reformulations suggested by the query
alternation module 106 itself (and subsequently selected by
the users), etc. For example, a user may enter a ?rst search
query (q1), Which prompts the search engine 102 to provide
search results Which identify a ?rst set of items, such as
documents. The user may or may not be satis?ed With the
search results produced by the ?rst search query (q1). If not,
the user may decide to manually modify the ?rst search query
(q1) in any manner to produce a second, reformulated, search
query (q2). This prompts the search engine 102 to identify a
second set of documents. The user may repeat this procedure
any number of times until the user receives search results that
satisfy his or her search objectives, or until the user abandons
the search. Generally, the query formulation information
describes the consecutive queries entered by users in the
above-described iterative search behavior.
[0034] The preference information describes any behavior
exhibited by users Which has a bearing on Whether or not the
users are satis?ed With the results of their respective search
queries. For example, With respect to a particular reformu
lated query, the preference information may correspond to an
indication of Whether or not a user selected an item Within the
search results generated for that particular reformulated
query, such as Whether or not the user “clicked on” or other
Wise selected at least one network-accessible resource (e. g., a
Web page) Within the search results. In addition, or alterna
tively, the preference information can include other types of
information, such as dWell time information, re-visitation
pattern information, etc.
[0035] The above-described preference information can be
categoriZed as implicit preference information. This informa
tion indirectly re?ects a user’s evaluation of the search results
of a search query. In addition, or alternatively, the preference
information can include explicit preference information.
Explicit preference information conveys a user’s explicit
evaluation of the results of a search query, e.g., in the form of
an explicit ranking score entered by the user or the like.

[0036] Based on the query formulation information and the
preference information, the model generation module 104
generates labeled reformulation information. For each query
reformulation, the labeled reformulation information pro
vides a tag or the like Which indicates the extent to Which a
user is satis?ed With the query reformulation (in vieW of the
particular search objective of the user at that time). In one
case, such a tag can provide a binary good/bad assessment; in
another case, the tag can provide a multi-class assessment. In
the binary case, a query reformulation is good if it can be
directly or indirectly assumed that a user considered it as
satisfactory, e.g., based on click data conveyed by the prefer
ence information and/ or other evidence. A query formulation
is bad if it can be directly or indirectly assumed that a user
considered it as unsatisfactory, e.g., based on the absence of
click data and/ or other evidence. The explanation beloW (With
reference to FIG. 9) provides illustrative preference-mapping
rules that can be used in one implementation to map the
preference information to particular query reformulation
labels for the binary case.

[0037] In the above case, the tags applied to query refor
mulations re?ect individual assessments made by individual
users (either implicitly or explicitly). In addition, or alterna

Sep. 13,2012

tively, the model generation module 104 can assign tags to
query formulations based on the collective or aggregate
behavior of a group of users. Further, the model generation
module 104 can apply a single tag to a set of similar query
reformulations, rather than to each individual query reformu
lation Within that set.

[0038] The corpus of labeled reformulated queries com
prises a training set used to generate the model. More speci?
cally, the model generation module 104 uses the labeled
reformulated information to generate the classi?cation model
112, based on a machine learning technique. The model 112
thus produced comprises a plurality of features having
respective Weights associated thereWith. Optionally, each fea
ture may also have a level of uncertainty associated thereWith.
Optionally, the model 112 can also express pairWise uncer
tainty, that is, the amount that tWo features covary together,
and/or uncertainty associated With any higher-order combi
nation(s) of features (e.g., expressing three-Way interaction or
greater).
[0039] More speci?cally, each feature de?nes a rule for
altering a search query in a de?ned manner at query time,
assuming that the feature matches the search query. For
example, for a feature to match the search query, the search
query (and/or circumstance surrounding the submission of
the search query) is expected to match a context condition
(CC) speci?ed by the feature. Once generated, the model 112
can be installed by the query alteration module 106 for use in
processing search queries in normal production use of the
search engine 102.
[0040] More speci?cally, at query time, assume that a user
submits a neW search query. The query alteration module 106
can use the model 112 to identify Zero, one, or more candidate
alterations that are appropriate for the search query. Namely,
each candidate alteration matches at least one feature in a set
of features speci?ed by the model 112. If possible, the query
alteration module 106 then generates at least one recom
mended alteration of the search query, selected from among
the candidate alteration(s). This can be performed based on
scores associated With the respective candidate alteration(s).
The search engine 102 can then automatically pass the rec
ommended alteration(s) to the searching functionality 108.
Alternatively, or in addition, the search engine 102 can direct
the recommended alteration(s) to the user for his or her con
sideration.

[0041] In one implementation, the query alteration module
106 includes a context-aWare query alteration (CAQA) mod
ule 116 Which performs the above-summarized functions.
The CAQA module 116 is said to be “context aWare” because
it takes into account contextual information Within (or other
Wise applicable to) the search query in the course of modify
ing the search query. The CAQA module 116 can optionally
Work in conjunction With other (possibly pre-existing) alter
ation functionality 118 provided by the search engine 102.
For example, the CAQA module 116 can perform high-end
contextual modi?cation of the search query, While the other
alteration functionality 118 can perform more routine modi
?cation of the search query, such by providing spelling cor
rection and routine stemming, etc. In another manner of com
bined use, the CAQA module 116 can perform a query
alteration if it has suitable con?dence that the alteration is
valid. If not, the query alteration module 106 can rely on the
other alteration functionality 118 to perform the alteration;
this is because the other alteration functionality 1 18 may have
access to more robust and/ or dependable data compared to the

US 2012/0233140 A1

CAQA module 116. Or the CAQA module 116 can refrain
from applying or suggesting any query alterations.

[0042] FIGS. 2-5 provide a simpli?ed example Which clari
?es the above-summariZed principles. Starting With FIG. 2,
assume that a user inputs a ?rst search query (q1), “Ski Cabin
Rentals,” With the objective of retrieving documents relevant
to cabins that can be rented for an upcoming ski vacation.
Assume, hoWever, that the user is unsatis?ed With the list of
documents returned by the search engine 102 in response to
the ?rst search query (q1). To address this situation, assume
that the user decides to modify the ?rst search query (q1) by
changing the Word “Cabin” to “House.” This produces a
second search query (q2), namely, “Ski House Rental,”
Which, in turn, produces a second list of documents. Assume
that the user is noW satis?ed With at least one document in the

second list of documents, e.g., as evidenced by the fact that
the user clicks on this document in the list of search results or
otherWise performs some behavior that evinces an interest in
this document.

[0043] As to terminology, each component in a search
query is referred herein as a query component or query entity.
For example, the ?rst search query (q1) includes the query
components “Ski,” “Cabin,” and “Rentals.” Here, the
sequence of query components corresponds to a sequence of
Words input by the user in formulating the search query. Any
query component can alternatively refer to information Which
is related to or derived from one or more original Words in a
search query. For example, the search engine 102 can consult
any type of ontology to identify a class (or other entity) that
corresponds to an original Word in a search query. That entity
can be subsequently added to the search query, e.g., to supple
ment the original Words in the search query and/ or to replace
one or more original Words in the search query. One illustra
tive ontology that can be used for this purpose is the YAGO
ontology described in, for example, Suchanek, et al., “YAGO:
A Core of Semantic Knowledge Unifying WordNet and Wiki
pedia,” Proceedings of the 16th International Conference on
World Wide Web, 2007, pp. 697-706. In the context ofFIG. 1,
this ?gure shoWs that the query alteration module 106 can
utiliZe one or more alteration resources 120 in processing
search queries, one of Which may be any type of ontology.
And FIG. 2 indicates the manner in Which a Word in the ?rst
search query (q1) (“cabin”) can be mapped, using an ontol
ogy, to a class (“domicile”). HoWever, so as to not unduly
complicate the folloWing explanation, most of the examples
Will make the simplifying assumption that the query compo
nents correspond to original Words in the search query.

[0044] There is a part of the ?rst search query (q1) Which is
not common to the second search query (q2). This ?rst part is
referred to by the symbol 51. The ?rst part (S1) can include a
sequence of Zero, one, or more query components. There is
also a counterpart part of the second search query (q2) Which
is not common to the ?rst search query (q1). This second part
is referred to by the symbol S2. The second part (S2) can
include a sequence of Zero, one, or more query components.
The transformation of the ?rst part to the second part is
referred to by the notation 514 S2. In the example of FIG. 2,
the ?rst part (S1) corresponds to the query component
“Cabin” and second part (S2) corresponds to the query com
ponent “House.” In the examples that folloW, to facilitate
explanation, it Will be assume that the modi?cation of S1 to
S2 involves the modi?cation, introduction, or removal of a
single query component, e.g., a Word, class label, etc.

Sep. 13,2012

[0045] A context condition (CC) de?nes a context under
Which the ?rst part (S1) is transformed into the second part
(S2). More speci?cally, in one case, the context condition
may include a combination of Zero, one, or more context

components (e.g., corresponding to Zero, one, or more respec
tive query components) that are expected to be present in the
?rst query for the modi?cation S1—>S2 to take place. In the
scenario of FIG. 1, the context condition corresponds to the
single context component “Ski.” More generally, in the
examples to folloW, each context condition Will correspond to
a single query component. But, in the more general case, a
context condition can include a combination of tWo or more

context components, formally described as Aici, Where cl.
refers to the ith context component and Al- refers to any Way of
combining that component With other components, e. g.,
using an AND operator, OR operator, NOT operator, etc. A
context condition that has Zero context components indicates,
in one interpretation, that the context condition may apply to
every possible context.
[0046] In the above examples, the context condition refers
to query components that are present in a search query. HoW
ever, as Will be described beloW, a context condition may
more generally refer to a prevailing context in Which the user
submits the search query. The context condition of the search
query may derive from information that is imparted from
some source other than the search query itself.

[0047] The model generation module 104 can derive at
least one feature based on the query reformulation described
in FIG. 2. To repeat, each feature describes a rule for convert
ing S1 to S2 under the presence of a context condition, or
more formally expressed as (CC) S1QS2, Where CC repre
sents the context condition. In the case of FIG. 2, the feature
states that the query component “Cabin” is transformed into
the query component “House” in the presence of the context
condition “Ski.” Less formally stated, the feature states that,
When the Word “Cabin” is used in the same query With the
Word “Ski,” it may mean that the user is attempting to describe
a house that is nearby a ski slope, instead of using the Word
“Cabin” in a different sense, such as the nautical sense of FIG.
4

[0048] In many cases, the model generation module 104
can generate a plurality of rules based on a single query
reformulation. For example, FIG. 3 shoWs the same query
formulation as FIG. 2. In this case, the model generation
module 104 identi?es the context condition “Rentals,”
instead of the context condition “Ski.” This results in the
generation of another feature based on this context condition.
Another feature (not shoWn) may specify a context condition
that identi?es the length of S1 (e.g., the number of query
components in S1), and so on.

[0049] In general, When mining a query pair for features,
the model generation module 104 can look for any context
condition selected from a set of possible context conditions.
FIG. 10, to be described beloW, describes one such set of
possible context conditions. From a high level perspective,
some of the context conditions depend on the mere presence
of a context component (e.g., a query component) in the ?rst
search query (q1). Other of the context conditions depend on
a particular location of a context component Within the ?rst
search query (q1). In addition, or alternatively, some of the
context conditions specify constraints that pertain to the
length of the ?rst search query (q1), e.g., relating to the
number of query components in the ?rst search query, and so
on. And as noted above, other context conditions can pertain

US 2012/0233140 A1

to information Which derives from a source (or sources) that
are beyond that of the immediate search query.
[0050] FIG. 4 shoWs another query formulation in Which
the user enters a ?rst search query “Alaska Cruise Cabin.”
Here, the user is apparently looking for information regarding
the rooms of a cruise ship. If the user is unhappy With the
results of the ?rst search query, assume that the user enters a
second search query, namely “Alaska Cruise Room.” The
model generation module 104 learns a feature based on this
reformulation that speci?es that the query component
“Cabin” is modi?able to the query component “Room” in the
presence of the context condition “Cruise.” In other Words,
the Word “Cruise” casts a different interpretation on the man
ner in Which the Word “Cabin” is to be modi?ed, compared to
the ?rst example (of FIG. 2).
[0051] As canbe appreciated, the model generation module
104 can generate an enormous number of features by process
ing query reformulations in the manner described above. In
this process, the model generation module 104 can transform
the search queries and their respective query reformulations
into feature space. This space represents each query using one
or more features, as described above. The features associated
With queries may be vieWed as statements that characterize
those queries, Where those statements that can be subse
quently processed by a machine learning technique.
[0052] HoWever, many of the features in feature space are
encountered only once or only a feW times, and thus do not
provide general rules to guide the operation of the CAQA
module 116 at query time. To identify meaningful features,
the model generation module 104 generates parameter infor
mation. For example, the parameter information can include
Weights assigned to each feature. Generally speaking, a
Weight relates to a number of instances of a feature Which
have been encountered in a corpus of query reformulations.
The parameter information can also optionally include uncer
tainty information (such as variance information) Which
re?ects the level of uncertainty associated With each indi
vidual feature, e.g., each Weight. As stated above, the uncer
tainty information can also express joint uncertainty, that is,
the amount that tWo features covary together, and/or uncer
tainty associated With higher-order combinations.
[0053] For example, a feature that is observed many times
and is consistently regarded as satisfactory by a user Will have
a high Weight and a loW level uncertainty. This feature is
therefore a meaningful feature for inclusion in the model 1 12.
A feature Which is observed many times but has an inconsis
tent interpretation (as good or bad) may have a relatively high
Weight but a higher level of uncertainty (compared to the ?rst
case). A feature Which is seldom encountered may have a loW
Weight and a high level of uncertainty. As Will be described in
greater detail beloW, in one implementation, the model gen
eration module 104 may bias the interpretation of Weights in
a conservative manner, e.g., by diminishing a feature’s Weight
in proportion to its level of uncertainty. Further, to expedite
and simplify subsequent query-time processing, the model
generating module 1 04 can remove features that have Weights
and/or levels of uncertainties that do not satisfy prescribed
threshold(s).
[0054] Assume that a model 112 is produced based on a
corpus of training information, a small part of Which is shoWn
in FIGS. 2-3. Then assume that the model 112 is installed in
the CAQA module 1 16. At query time, the CAQA module 1 1 6
applies the model 112 When processing neW search queries.
FIG. 5 shoWs one such illustrative search query. Here, the user

Sep. 13, 2012

inputs “Caribbean Cruise Cabin,” With the apparent intent of
investigating information regarding rooms on a cruise ship
that sails the Caribbean Sea. In operation, the CAQA module
116 ?rst matches the search query against a set of possible
features speci?ed in the model 112. The search query matches
a feature When it includes a part S1 and a context condition
that are speci?ed by the feature. If there is a match, the
matching feature supplies the part S2 of the feature. Each
matching feature has a Weight, and, optionally, an uncertainty
associated thereWith. Any combinations of features (such as
pairs of features, etc.) may also have uncertainty associated
thereWith.

[0055] By identifying a matching feature, the CAQA mod
ule 116 also generates a counterpart candidate alteration of
the search query (“Caribbean Cruise Cabin”). In some cases,
a single query candidate alteration may be predicated on tWo
or more underlying matching features. The CAQA module
116 also assigns a score to each candidate alteration based on
the Weight(s) (and optionally uncertainty(ies)) associated
With the candidate alteration’s underlying matching feature
(s).
[0056] The CAQA module 116 can then select one or more
of the candidate alterations based on the scores associated
thereWith. According to the terminology used herein, this
operation produces one or more recommended alterations.
The top-ranked recommended alteration shoWn in FIG. 5 is
“Caribbean Cruise (Cabin or Room).” For this entry, it is
apparent that the CAQA module 116 has applied the rule
learned in FIG. 4, rather than the tWo rules learned in FIGS. 2
and 3. This is an appropriate outcome because the user is
using the Word “Cabin” in the context of a room on a ship, not
a house on land. The search engine 102 may then proceed to
pass the altered search query (“Caribbean Cruise (Cabin or
Room)”) to the searching functionality 108. In some cases,
the search engine 102 can pass tWo or more recommended
alterations to the searching functionality 108, both of Which
are used to generate search results. Or the search engine 102
may just suggest one or more query alterations to the user.

[0057] In the above simpli?ed example, the model 112 Was
learned on the basis of a context condition expressed in each
search query q1 of each pair of consecutive search queries
(q1, q2). And in the real-time search phase, the CAQA mod
ule 116 examines the context condition expressed in the cur
rent search query q1. In other cases, the context condition can
be derived from any other source (or sources) besides, or in
addition to, the user’s search query q1. For example, the
context condition that is deemed to apply to a particular
search query q1 can originate from any other search query in
the user’s current search session, and/or any group of search
queries in the current search session, and/ or any search query
(ies) over plural of the user’s search sessions. In addition, or
alternatively, a context condition can derive from text that
appears in text snippets that appear in the search results, etc.
In addition, or alternatively, the context condition can derive
from any type of user pro?le information (associated With the
person Who is currently performing the search). In addition,
or alternatively, the context condition can derive from any
behavior of the user beyond the reformulation behavior of the
user, and so on. These variations are representative, rather
than exhaustive. Generally stated, the context condition refers
to any circumstance in Which a transformation from S1QS2
has been observed to take place, derivable from any source(s)
of evidence. This, in turn, means that the features themselves
are derivable from any combination of sources. HoWever, to

US 2012/0233140 A1

facilitate the explanation, the remaining description Will
assume that the features are mined from pairs of consecutive
queries.
[0058] In addition, the CAQA module 116 can create a
query alteration by applying tWo or more features in succes
sion to an input search query q1. However, to facilitate the
explanation, the remaining description Will assume that the
CAQA module 116 applies a single feature having a single
transformation S1QS2.
[0059] FIG. 6 depicts one illustrative implementation 600
of the environment 100 shoWn in FIG. 1. In this example, a
user interacts With local computing functionality 602 to input
search queries and receive search results. The local comput
ing functionality 602 can be implemented by any computing
functionality, including a personal computer, a computer
Workstation, a laptop computer, a PAD-type computer device,
a game console device, a set-top box device, a personal digital
assistant device, and electronic book reader device, a mobile
telephone device, and so on.
[0060] The local computing functionality 602 is coupled to
remote computing functionality 604 via one or more commu
nication conduits 606. The remote computing functionality
604 can be implemented by one or more server computers in
conjunction With one or more data stores, routers, etc. This
equipment can be provided at a single site or distributed over
plural sites. The communication conduit(s) 606 can be imple
mented by one or more local area netWorks (LANs), one or

more Wide area netWorks (WANs) (e.g., the Internet), one or
more point-to-point connections, and so on, or any combina
tion thereof. The communication conduits(s) 606 can include
any combination of hardWired links, Wireless links, name
servers, routers, gateWays, etc., governed by any protocol or
combination of protocols.
[0061] In one implementation, the remote computing func
tionality 604 implements both the search engine 102 and the
model generation module 104. Namely, the remote comput
ing functionality 604 can provide these components at the
same site or at different respective sites. A user may operate
broWser functionality 608 provided by the local computing
functionality 602 in order to interact With the search engine
102. HoWever, this implementation is one among many. In
another case, the local computing functionality 602 can
implement at least some aspects of the search engine 102
and/or the model generation module 104. In another imple
mentation, the local computing functionality 602 can imple
ment all aspects of the search engine 102 and/or the model
generation module 104, potentially dispensing With the use of
the remote computing functionality 604.
[0062] Having noW set forth an overvieW of the environ
ment 100 shoWn in FIG. 1, the remaining explanation in this
section Will set forth additional details regarding individual
components Within the environment 100.
[0063] Starting With FIG. 7, this ?gure shoWs additional
details regarding the model generation module 104 of FIG. 1.
The model generation module 104 includes a label applica
tion module 702 Which receives the query reformulation
information and the preference information from a Web log
(associated With the data store(s) 114 shoWn in FIG. 1),
optionally as Well as other training information. To repeat, the
query reformulation information describes a plurality of
query reformulations made by at least one agent, such as
users. The preference information re?ects behavior that can
be mined to infer an extent to Which the users Were satis?ed

(or not) With their query formulations.

Sep. 13,2012

[0064] The label application module 702 uses the query
reformulation information and preference information to
assign labels, either individually or in some aggregate form,
to the reformulated queries, forming labeled reformulation
information, Which can be stored in one or more data stores

704. For example, in the binary case, the label application
module 702 can assign a ?rst label (e.g., +1) that indicates that
the user Was satis?ed With a query reformulation, and a sec

ond label (e.g., —I) that indicates that the user Was dissatis?ed
With the query reformulation. To function as described, the
label application module 702 can rely on a set of labeling
rules 706. One implementation of the labeling rules 706 Will
be set forth in the context of FIGS. 8 and 9 (beloW).

[0065] A training module 708 uses a machine learning
technique to produce the model 112 based on the labeled
reformulation information. The training process generally
involves identifying respective pairs (or other combinations)
of queries, identifying features Which match the pairs of
queries, and generating parameter information pertaining to
the features that have been identi?ed. This effectively con
ver‘ts the queries into a feature-space representation of the
queries. The parameter information can express Weights asso
ciated With the features, as Well as (optionally) the levels of
uncertainty (e.g., individual and/or joint) associated With the
features. More speci?cally, the training module 708 can use
different techniques to produce the model 112, including, but
not limited, to a Naive Bayes technique, a logistic regression
technique, a con?dence-Weighted technique, and so on. Sec
tion B provides additional details regarding these techniques.
[0066] In the binary case, FIGS. 8 and 9 together set forth
one approach that can be used to label query reformulations as
satisfactory or unsatisfactory based on click data. In one
implementation, the click data re?ects netWork-related
resources (e.g., Web pages) that the users clicked on immedi
ately after submitting queries and receiving associated search
results. As explained above, other implementations can mine
other facets of user behavior to determine the users’ likes and
dislikes.

[0067] Starting With FIG. 8, assume that the user ?rst enters
search queryA. Some of the users then reformulate queryA as
query B. Other users reformulate the query A as query C.
Other users reformulate the query A as query D, and so on.
Still other users abandon the search altogether after entering
query A. At any juncture, the user may either click on at least
one entry in the search results (“Click”) or not click on any
entries in the search results (“No Click”).
[0068] According to the terminology used herein, the num
ber of users Who are given the opportunity to click on any
entry in the search results generated by a search query X is
denoted as I X (e. g., indicating the number of impressions for
that query X). The number of users Who actually clicked on an
entry for query X is denoted as C X. The number of users Who
are given the opportunity to click on any entry for query Y
after entering query X is denoted as I m X. The number of users
Who actually clicked on any entry in this X—>Y circumstance
is denoted by C m X.

[0069] FIG. 9 sets forth illustrative preference-mapping
rules that can be used to interpret the behavior shoWn in FIG.
8. In particular, this table is aimed at determining Whether the
user is satis?ed With query B, Which is a reformulation of
query A. First consider the relatively clear-cut case in Which
the user performs the query reformulation A—>B and then
clicks on an entry in the results for query B, but not on an entry

