Computational Learning Theory

10-701/15-781, Recitation March 25, 2010 Ni Lao

What's Computational Learning Theory?

- Laws about whether we can perform learning successfully or not
 - Instead of relying purely on empirical knowledge, our skills in probability can help
- Often in the form of the following question
 - With a family of models *H* of certain complexity, how many training samples *R* is needed in order to learn a model *h* with reasonable training time and sufficient accuracy on future data?
- Major components
 - Model complexity
 - Num. of parameters? Size of hypothesis space? VC-dimension?
 - Sample complexity
 - Error rate
 - Time complexity

What We Have Learnt in Class

- For categorical inputs
 - PAC Learning
 - (Probably Approximately Correct Learning)
 - All inputs and outputs are binary \rightarrow easy to measure |H|
 - Data is noiseless \rightarrow easy to analyze
- For continuous inputs
 - VC dimension
 - a hypothesis family H can shatter a set of points x₁, x₂...x_r, iff for every possible label y₁, y₂...y_r (2^r of them), there exists some hypothesis h in H that can gets zero training error
 - VC(H) is the maximum number of points that can be shattered by H

Example: PAC Learning of Boolean Functions

• Chose number of samples R such that with probability less than δ we'll select a bad hypothesis (which makes mistakes more than fraction ϵ of the time)

2001, Andrew W. Moore

Example: VCd of Circle Hypothesis

• $H={f(x,b) = sign(x.x-b)}, VC(H)=?$

2001, Andrew W. Moore

Example: VCd of Circle Hypothesis

• $H={f(x,a,b) = sign(ax.x-b)}, VC(H)=?$

Homework 4

- VCd of Gaussian Bayes Models
 - Practice your VCd finding skills, in two class classification problems

ID	а	b	с	d	е	f
No. features	1	1	2	2	2	2
Shared Covariance Matrix?	Y	Ν	Y	Y	Ν	Ν
Naive Bayes?	-	-	Y	Ν	Y	Ν
No. parameters						
VC dimension						

Policy: number of parameters is 0.5pt each. VC dimension is 2pt each, and you get $\max(0, 2 - d_{best} + d_{your})$ pt, where d_{best} is the best bound I know, and d_{your} is your answer. You need to convince me in order to get credit for the VC dimension, but you need not give a formal proof.

Hint: think about what kind of decision boundary we get in each of the models.

Homework 4

- Linear Regression Model
 - express the average risk R(λ)/n for linear regression (λ =0) as a function of #features p and #samples n

$$\begin{array}{c} \sim \mathcal{N}(0,\sigma^{2}I) & & & & & & & \\ \sim \mathcal{N}(0,\alpha^{2}I) & & & & & & \\ \sim \mathcal{N}(0,\sigma^{2}I) & & & & & & \\ \sim \mathcal{N}(0,\sigma^{2}I) & & & & & & & \\ \end{array}$$

• Result from hw3 (slightly revised)

•

$$\begin{aligned} R(\lambda) &= E[e(\lambda)^T e(\lambda)] \\ &= \sum_{i=1..p} \left[\left(\frac{\lambda d_i}{d_i^2 + \lambda} \right)^2 \alpha^2 + \left(\frac{d_i^2}{d_i^2 + \lambda} \right)^2 \sigma^2 \right] + \sum_{i=1..n} \sigma^2 \end{aligned}$$

Summary of Model Selection Methods

- VC dimension (Structural Risk Minimization)
 - Very conservative
- AIC (Akaike Information Criterion)
 - Asymptotically the same as Leave-one-out CV
- BIC (Bayesian Information Criterion)
 - Asymptotically the same as a carefully chosen k-fold CV
- (CV) Cross-validation
 - The ultimate weapon used by most people who apply ML techniques

- The End
- Thanks