Expectation-Maximization

10-701/15-781, Recitation Feb 18, 2010 Ni Lao

What's EM

- Used for finding maximum likelihood estimates of parameters in probabilistic models
- Useful when there are latent variables (incomplete data)
 - No closed form solution to the objective/gradient due to the summation over hidden variables
 - Or when we don't want the standard optimization procedures
- It alternates between two steps
 - Expectation (E) step
 - computes an expectation of the latent variables
 - Maximization (M) step
 - computes the parameters which maximize the expected log likelihood given the expectations from E-step

MLE with Hidden Variables

We have a MLE problem

$$\max_{\theta} \log P(D \mid \theta) = \max_{\theta} \sum_{l} \log P(x^{l} \mid \theta)$$

 For most applications, the existence of latent variables z makes it nasty to compute expectations (here we omit the superscript l)

$$\log P(\mathbf{x} \mid \theta) = \log \sum_{z} P(\mathbf{x}, \mathbf{z} \mid \theta)$$

- e.g.
 - z is a binary vector of length n, z_i are not independent
 - then there are 2ⁿ terms in the summation
 - not affordable if dynamic programming is not applicable

MLE with GMM

• For GMM, $z_i x_i$ are indeed independent to each other, and we can calculate the objective function efficiently

$$\log P(\mathbf{x} \mid \theta) = \log \sum_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}, \theta) P(\mathbf{z} \mid \theta)$$

$$= \log \sum_{\mathbf{z}} \prod_{i} P(\mathbf{x}_{i} \mid \mathbf{z}_{i}, \theta) P(\mathbf{z}_{i} \mid \theta)$$

$$= \log \prod_{i} \sum_{\mathbf{z}_{i}} P(\mathbf{x}_{i} \mid \mathbf{z}_{i}, \theta) P(\mathbf{z}_{i} \mid \theta)$$

- But we still cannot get close form solution to the parameters
 - after introducing hidden variables, the objective function is not convex anymore
- And we hate gradient ascent
 - especially with constrained optimization $\pi'1=1$

Variational Method

- The variational method
 - approximates the original objective function by adding extra parameters
 - Here we introduce a set of parameters $Q(Z^{l}=z)$ for each sample (x^{l},z^{l})

$$l(\theta) = \log P(\mathbf{x} \mid \theta) = \log \sum_{\mathbf{z}} Q(\mathbf{z}) \frac{P(\mathbf{x}, \mathbf{z} \mid \theta)}{Q(\mathbf{z})} \ge \sum_{\mathbf{z}} Q(\mathbf{z}) \log \frac{P(\mathbf{x}, \mathbf{z} \mid \theta)}{Q(\mathbf{z})} = l^{EM}(\theta, Q)$$

- Jensen's inequality: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$
- Sometimes, we constrain the distribution Q to have factorized form

$$Q(\mathbf{z}) = \prod Q(z_i)$$

 therefore, we can enumerate each z_i independently instead of jointly in the summation

KL Divergence

- $l^{EM}(x)$ is an lower bound of l(x), and the gap is a KL divergence.
 - for GMM, there is no constraint on $Q(z^l)$, therefore the gap can be zero

$$l(\theta) - l^{EM}(\theta, Q) = \log P(\mathbf{x} \mid \theta) - \sum_{\mathbf{z}} Q(\mathbf{z}) \log \frac{P(\mathbf{x}, \mathbf{z} \mid \theta)}{Q(\mathbf{z})}$$

$$= \sum_{\mathbf{z}} Q(\mathbf{z}) \log P(\mathbf{x} \mid \theta) - \sum_{\mathbf{z}} Q(\mathbf{z}) \log \frac{P(\mathbf{x}, \mathbf{z} \mid \theta)}{Q(\mathbf{z})}$$

$$= \sum_{\mathbf{z}} Q(\mathbf{z}) \log \frac{P(\mathbf{z} \mid \mathbf{x}, \theta)}{Q(\mathbf{z})}$$

$$= KL(Q(\mathbf{z}) || P(\mathbf{z} \mid \mathbf{x}, \theta))$$

- KLD
 - measures the difference of two distributions
 - is never negative
 - Is zero iff the two distributions are identical

E-step

Actually still a maximization step

$$Q^{new} = \arg \max_{Q} l^{EM}(\theta, Q) = \arg \min_{Q} KL(Q(z) || P(z | x, \theta))$$

- For GMM, just set $Q(z^l) = P(z^l | x^l, \theta)$
 - here we got the name "E-step"

M-step

Another maximization step

$$\theta^{new} = \arg \max_{\theta} l^{EM}(\theta, Q) = \arg \max_{\theta} \sum_{z} Q(z) \log P(x, z \mid \theta)$$

- For GMM (and many other directed graphic models)
 - there are closed form solutions

$$\pi_{i}^{(t+1)} = \frac{\sum_{j} P(y=i|x_{j}, \lambda_{t})}{m} \qquad \mu_{i}^{(t+1)} = \frac{\sum_{j} P(y=i|x_{j}, \lambda_{t})x_{j}}{\sum_{j} P(y=i|x_{j}, \lambda_{t})} \qquad \Sigma_{i}^{(t+1)} = \frac{\sum_{j} P(y=i|x_{j}, \lambda_{t})(x_{j} - \mu_{i}^{(t+1)})(x_{j} - \mu_{i}^{(t+1)})^{T}}{\sum_{j} P(y=i|x_{j}, \lambda_{t})}$$

- You've done it in HW2~~~
- For other applications (e.g. undirected graphic model)
 - this step itself may be an optimization procedure like gradient ascent, or Newton's method

Summery

- EM is useful when there are latent variables (incomplete data)
 - No closed form solution to the parameters
 - Hard to estimate objective/gradient due to the summation over hidden variables
 - Or when we don't like the standard optimization procedures
- It alternates between two steps
 - Maximizing the variational parameter Q(z)
 - Maximizing the model parameter θ

- The End
- Thanks