Linear Algebra & Matlab

10-701/15-781, Recitation Jan 21, 2010 Ni Lao

Part I Some Linear Algebra
Might be useful to HW2 and later courses

Basics

- We will use lower case letters for vectors, and upper case letters from matrixes. There elements are referred by x_i, A_{i,j}. Refer A's column vectors as A_j
- *AB*
 - still remember what is matrix multiplication?
- $A = A^T$
 - transpose and symmetric matrix
- $a \cdot b = a^T b$, $a \cdot b = |a|_2$
 - inner product, vectors are also matrixes
- AA-1=1
 - Inverse and the identity matrix
- $tr(A) = diag(A)^T 1$
 - trace, and the diagonal of a matrix

Basis and Space

- $span(x_1, x_2, x_3) = \{a_1x_1 + a_2x_2 + a_3x_3 \mid a_i \in R\}$
 - the span of a set of vectors is a subspace in the R^d space, assuming x_i are vectors in R^d space
- *col(A)={x|x=Ab}*
 - A's column space is the span of A's column vectors
- row(A)= $\{x | x = A^T b\}$
 - A's rows space is the span of A's rows vectors
- Basis
 - A basis B of a space V is a linearly independent subset of V that spans (or generates) V
- e_i=(0,0,...1,...,0)
 - the standard basis

Unitary Matrix

• If $a \cdot b = 0$, $|a|_2! = 0$, $|b|_2! = 0$,

- then a and b are orthogonal

- If n-by-n matrix A, $A^T A = I$
 - then A is an unitary matrix
 - $-|A_i|_2=1$ for any i
 - $\text{ and } A_i \bullet A_j = 0, \text{ for } i!=j$
- If A is unitary, then A^T is also unitary

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 - The maximal number of linearly independent columns
 - The maximal number of linearly independent rows
 - The dimension of col(A)
 - The dimension of row(A)
- If A is n by m, then
 - $\operatorname{rank}(A) \le \min(m,n)$
 - If n=rank(A), then A has full row rank
 - If m=rank(A), then A has full column rank

Singular Value Decomposition (SVD)

- Any matrix A can be decompose as A=UDV^T, where
 - where D is diagonal, with d=rank(A) non-zero elements
 - U and V are unitary matrices
 - The fist d rows of U are orthogonal basis for col(A)
 - The fist d rows of V are orthogonal basis for row(A)
- Re-interpreting Ab
 - Decompose b by V basis
 - Scale it by diag(D)
 - Then map it to the space spanned by U basis

Eigen Value Decomposition

- Any symmetric matrix A can be decompose as A=UDU^T, where
 - where D is diagonal, with d=rank(A) non-zero elements
 - The fist d rows of U are orthogonal basis for col(A)=row(A)
- Re-interpreting Ab
 - first stretch b along the direction of u_1 by d_1 times
 - Then further stretch it along the direction of u_2 by d_2 times

U's column space R^2

Inversing a Low Rank Covariance Matrix

- In many applications (e.g. linear regression, Gaussian model) we need to calculate the inverse of covariance matrix $X^TX + \lambda I$
 - where each row of X is a data sample
 - I is an identity matrix for regularization
- If the number of feature is huge (e.g. each sample is an image, #sample n<<#feature d)
 - then X is an very wide and short matrix
 - inversing $X^TX + \lambda I$ becomes an problem
 - the complexity of matrix inversion is generally $O(n^3)$
 - Matlab can comfortably solve matrix with d=thousand, but not much more than that

Inversing a Low Rank Covariance Matrix

• With the help of SVD, we actually don't need to explicitly inverse $X^TX + \lambda I$

- Decompose $X = UDV^T$

- Then $X^T X + \lambda I = V D U^T U D V^T + \lambda I = V (D^2 + \lambda I) V^T$
- Since $V(D^2+\lambda I)V^TV(D^2+\lambda I)^{-1}V^T=I$
- We know that $(X^T X + \lambda I)^{-1} = V(D^2 + \lambda I)^{-1} V^T$
 - Inversing a diagonal matrix $D^2 + \lambda I$ is trivial

• Part II Matlab

– Might be useful to HW2

Matlab

- Very easy to do matrix manipulation in Matlab
- Available for installs by contacting help+@cs.cmu.edu
- If this is your first time using Matlab
 - Strongly suggest you go through the "Getting Started" part of Matlab help
 - Many useful basic syntax

Making Matrix

- A=[1 2 3; 4 5 6; 7 8 9]
- A=ones(m,n)
- A=zeros(m,n)
- A=eye(n)
- A=diag([1 2 3])

Referencing Matrix

• A(i,j)

- reference a single element

• A(i,:), A(:,j)

- reference a whole row/column

• b=1:3:100; A(b,:)

- using vector as index

• b=diag(A)

- reference the diagonal vector

Matrix Manipulation

• C=A';

- transpose

- C=A+B; D=A*B;
- D=A^3
 - Equal to A*A*A
- x=A\b; x=b/A
 - multiply the inverse of a matrix
- D=A.*B; D=A./B; D=A.\B; D=A.^3;
 - Point wise multiplication/division/power

Matrix Decomposition

- [U,S,V] = svd(X)
- [V,D] = eig(A)

- The End
- Thanks